Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYu-Pei Huangen
dc.contributor.author黃昱裴zh_TW
dc.date.accessioned2021-06-16T13:04:24Z-
dc.date.available2015-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citation蔡雯茹 (2010). SB203580增加G-CSF mRNA 的穩定度進而增加巨噬細胞中LPS誘發G-CSF的產生。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
黎懷慈 (2012). 位於G-CSF 3’端UTR之SLDE序列在SB203580誘導下增加G-CSF mRNA穩定度的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
高品筠 (2008). 顆粒性白血球群落刺激因子可刺激Akt/GSK3β/NFκB的訊息傳遞以抑制內毒素引起之過度活化的微膠細胞。慈濟大學藥理劑毒理學研究所
Adachi, Y., Imagawa, J., Suzuki, Y., Yogo, K., Fukazawa, M., Kuromaru, O., and Saito, Y. (2004). G-CSF treatment increases side population cell infiltration after myocardial infarction in mice. J Mol Cell Cardiol 36, 707-710.
Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., et al. (2003). A uniform system for microRNA annotation. RNA 9, 277-279.
Arnosti, D.N. (2003). Analysis and function of transcriptional regulatory elements: insights from Drosophila. Annu Rev Entomol 48, 579-602.
Asaduzzaman, M., Wang, Y., and Thorlacius, H. (2008). Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury. Crit Care Med 36, 482-488.
Bachstetter, A.D., and Van Eldik, L.J. (2010). The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis 1, 199-211.
Bachstetter, A.D., Xing, B., de Almeida, L., Dimayuga, E.R., Watterson, D.M., and Van Eldik, L.J. (2011). Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 8, 79.
Badger, A.M., Bradbeer, J.N., Votta, B., Lee, J.C., Adams, J.L., and Griswold, D.E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 279, 1453-1461.
Baldassare, J.J., Bi, Y., and Bellone, C.J. (1999). The role of p38 mitogen-activated protein kinase in IL-1 beta transcription. J Immunol 162, 5367-5373.
Beardmore, V.A., Hinton, H.J., Eftychi, C., Apostolaki, M., Armaka, M., Darragh, J., McIlrath, J., Carr, J.M., Armit, L.J., Clacher, C., et al. (2005). Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25, 10454-10464.
Birkenkamp, K.U., Tuyt, L.M., Lummen, C., Wierenga, A.T., Kruijer, W., and Vellenga, E. (2000). The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br J Pharmacol 131, 99-107.
Boneberg, E.M., and Hartung, T. (2002). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51, 119-128.
Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., and Gustin, M.C. (1993). An osmosensing signal transduction pathway in yeast. Science 259, 1760-1763.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535.
Brook, M., Sully, G., Clark, A.R., and Saklatvala, J. (2000). Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 483, 57-61.
Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996). A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc Natl Acad Sci U S A 93, 13721-13725.
Campbell, J., Ciesielski, C.J., Hunt, A.E., Horwood, N.J., Beech, J.T., Hayes, L.A., Denys, A., Feldmann, M., Brennan, F.M., and Foxwell, B.M. (2004). A novel mechanism for TNF-alpha regulation by p38 MAPK: involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J Immunol 173, 6928-6937.
Cao, L., Kong, L.P., Yu, Z.B., Han, S.P., Bai, Y.F., Zhu, J., Hu, X., Zhu, C., Zhu, S., and Guo, X.R. (2012). microRNA expression profiling of the developing mouse heart. Int J Mol Med 30, 1095-1104.
Chao, N.J., Schriber, J.R., Grimes, K., Long, G.D., Negrin, R.S., Raimondi, C.M., Horning, S.J., Brown, S.L., Miller, L., and Blume, K.G. (1993). Granulocyte colony-stimulating factor 'mobilized' peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 81, 2031-2035.
Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465-470.
Chen, K., and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8, 93-103.
Cheng, Y., Kuang, W., Hao, Y., Zhang, D., Lei, M., Du, L., Jiao, H., Zhang, X., and Wang, F. (2012). Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 35, 1308-1313.
Chou, Y.Y., Gao, J.I., Chang, S.F., Chang, P.Y., and Lu, S.C. (2011). Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2. FEBS J 278, 85-96.
Chou, Y.Y., and Lu, S.C. (2011). Inhibition by rapamycin of the lipoteichoic acid-induced granulocyte-colony stimulating factor expression in mouse macrophages. Arch Biochem Biophys 508, 110-119.
Clark, A.R., Dean, J.L., and Saklatvala, J. (2003). Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 546, 37-44.
Coles, L.S., Diamond, P., Occhiodoro, F., Vadas, M.A., and Shannon, M.F. (1996). Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 24, 2311-2317.
Coulthard, L.R., White, D.E., Jones, D.L., McDermott, M.F., and Burchill, S.A. (2009). p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15, 369-379.
Dale, D.C., Cottle, T.E., Fier, C.J., Bolyard, A.A., Bonilla, M.A., Boxer, L.A., Cham, B., Freedman, M.H., Kannourakis, G., Kinsey, S.E., et al. (2003). Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 72, 82-93.
Dean, J.L., Brook, M., Clark, A.R., and Saklatvala, J. (1999). p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem 274, 264-269.
Dini, G., Arcese, W., Barbanti, M., Biffoni, F., Bosi, A., Lanino, E., Majolino, I., Menichella, G., and Reali, G. (1998). Peripheral blood stem cell collection from G-CSF-stimulated unrelated donors for second transplant. Bone Marrow Transplant 22 Suppl 5, S41-45.
Du, T., and Zamore, P.D. (2005). microPrimer: the biogenesis and function of microRNA. Development 132, 4645-4652.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Dweep, H., Sticht, C., Pandey, P., and Gretz, N. (2011). miRWalk--database: prediction of possible miRNA binding sites by 'walking' the genes of three genomes. J Biomed Inform 44, 839-847.
Espel, E. (2005). The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 16, 59-67.
Eyles, J.L., Hickey, M.J., Norman, M.U., Croker, B.A., Roberts, A.W., Drake, S.F., James, W.G., Metcalf, D., Campbell, I.K., and Wicks, I.P. (2008). A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193-5201.
Flomenberg, N., Devine, S.M., Dipersio, J.F., Liesveld, J.L., McCarty, J.M., Rowley, S.D., Vesole, D.H., Badel, K., and Calandra, G. (2005). The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106, 1867-1874.
Frank, T., Klinker, F., Falkenburger, B.H., Laage, R., Luhder, F., Goricke, B., Schneider, A., Neurath, H., Desel, H., Liebetanz, D., et al. (2012). Pegylated granulocyte colony-stimulating factor conveys long-term neuroprotection and improves functional outcome in a model of Parkinson's disease. Brain 135, 1914-1925.
Gao, J., Davidson, M.K., and Wahls, W.P. (2009). Phosphorylation-independent regulation of Atf1-promoted meiotic recombination by stress-activated, p38 kinase Spc1 of fission yeast. PLoS One 4, e5533.
Garty, B.Z., Levy, I., Nitzan, M., and Barak, Y. (1996). Sweet syndrome associated with G-CSF treatment in a child with glycogen storage disease type Ib. Pediatrics 97, 401-403.
Guo, X., Gerl, R.E., and Schrader, J.W. (2003). Defining the involvement of p38alpha MAPK in the production of anti- and proinflammatory cytokines using an SB 203580-resistant form of the kinase. J Biol Chem 278, 22237-22242.
Hale, K.K., Trollinger, D., Rihanek, M., and Manthey, C.L. (1999). Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 162, 4246-4252.
Han, J., Lee, J.D., Bibbs, L., and Ulevitch, R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811.
Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., Ohtsuka, M., Matsuura, K., Sano, M., Nishi, J., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11, 305-311.
Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur J Immunol 33, 2287-2296.
Hartung, T., Volk, H.-D., and Wendel, A. (1995). G-CSF - an anti-inflammatory cytokine. J Endotoxin Res 2, 195-201.
Hengge, U.R., Brockmeyer, N.H., and Goos, M. (1992). Granulocyte colony-stimulating factor treatment in AIDS patients. Clin Investig 70, 922-926.
Henklova, P., Vrzal, R., Papouskova, B., Bednar, P., Jancova, P., Anzenbacherova, E., Ulrichova, J., Maurel, P., Pavek, P., and Dvorak, Z. (2008). SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes. Eur J Pharmacol 593, 16-23.
Hierholzer, C., Kelly, E., Lyons, V., Roedling, E., Davies, P., Billiar, T.R., and Tweardy, D.J. (1998). G-CSF instillation into rat lungs mediates neutrophil recruitment, pulmonary edema, and hypoxia. J Leukoc Biol 63, 169-174.
Hirai, Y., Iyoda, M., Shibata, T., Kuno, Y., Kawaguchi, M., Hizawa, N., Matsumoto, K., Wada, Y., Kokubu, F., and Akizawa, T. (2012). IL-17A stimulates granulocyte colony-stimulating factor production via ERK1/2 but not p38 or JNK in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 302, F244-250.
Hirokawa, M., Lee, M., Motegi, M., and Miura, A.B. (1996). Reversible renal impairment during leukocytosis induced by G-CSF in non-Hodgkin's lymphoma. Am J Hematol 51, 328-329.
Hollenbach, E., Neumann, M., Vieth, M., Roessner, A., Malfertheiner, P., and Naumann, M. (2004). Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J 18, 1550-1552.
Horwood, N.J., Page, T.H., McDaid, J.P., Palmer, C.D., Campbell, J., Mahon, T., Brennan, F.M., Webster, D., and Foxwell, B.M. (2006). Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol 176, 3635-3641.
Jackson, J.R., Bolognese, B., Hillegass, L., Kassis, S., Adams, J., Griswold, D.E., and Winkler, J.D. (1998). Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 284, 687-692.
Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., and Liu, Y. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37, D98-104.
Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J.A., Lin, S., and Han, J. (1996). Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271, 17920-17926.
Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623-634.
Johnson, G.V., and Bailey, C.D. (2003). The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp Neurol 183, 263-268.
Jones, M.R., Quinton, L.J., Blahna, M.T., Neilson, J.R., Fu, S., Ivanov, A.R., Wolf, D.A., and Mizgerd, J.P. (2009). Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11, 1157-1163.
Kalmes, A., Deou, J., Clowes, A.W., and Daum, G. (1999). Raf-1 is activated by the p38 mitogen-activated protein kinase inhibitor, SB203580. FEBS Lett 444, 71-74.
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754, 253-262.
Kang, Y.J., Chen, J., Otsuka, M., Mols, J., Ren, S., Wang, Y., and Han, J. (2008). Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol 180, 5075-5082.
Kawakami, M., Tsutsumi, H., Kumakawa, T., Abe, H., Hirai, M., Kurosawa, S., Mori, M., and Fukushima, M. (1990). Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962-1964.
Kim, S.H., Kim, J., and Sharma, R.P. (2004). Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol Res 49, 433-439.
Kozomara, A., and Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, D152-157.
Kuma, Y., Campbell, D.G., and Cuenda, A. (2004). Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta. Biochem J 379, 133-139.
Lafarga, V., Cuadrado, A., Lopez de Silanes, I., Bengoechea, R., Fernandez-Capetillo, O., and Nebreda, A.R. (2009). p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 29, 4341-4351.
Lahti, A., Sareila, O., Kankaanranta, H., and Moilanen, E. (2006). Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: implication in inducible nitric oxide synthase expression. BMC Pharmacol 6, 5.
Le Guillou, S., Sdassi, N., Laubier, J., Passet, B., Vilotte, M., Castille, J., Laloe, D., Polyte, J., Bouet, S., Jaffrezic, F., et al. (2012). Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution. PLoS One 7, e45727.
Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
Lee, S.H., Bahn, J.H., Whitlock, N.C., and Baek, S.J. (2010). Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192.
Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.
Li, M., Cao, W., Liu, H., Zhang, W., Liu, X., Cai, Z., Guo, J., Wang, X., Hui, Z., Zhang, H., et al. (2012). MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One 7, e49841.
Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151.
Mahlknecht, U., Will, J., Varin, A., Hoelzer, D., and Herbein, G. (2004). Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J Immunol 173, 3979-3990.
Masuda, K., Ripley, B., Nishimura, R., Mino, T., Takeuchi, O., Shioi, G., Kiyonari, H., and Kishimoto, T. (2013). Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc Natl Acad Sci U S A 110, 9409-9414.
Matsushita, K., Takeuchi, O., Standley, D.M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., et al. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185-1190.
Meuer, K., Pitzer, C., Teismann, P., Kruger, C., Goricke, B., Laage, R., Lingor, P., Peters, K., Schlachetzki, J.C., Kobayashi, K., et al. (2006). Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson's disease. J Neurochem 97, 675-686.
Mraz, M., and Pospisilova, S. (2012). MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev Hematol 5, 579-581.
Muller, M.M., Ruppert, S., Schaffner, W., and Matthias, P. (1988). A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544-551.
Nagata, S., Tsuchiya, M., Asano, S., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., and Yamazaki, T. (1986). The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J 5, 575-581.
Nemoto, S., Xiang, J., Huang, S., and Lin, A. (1998). Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J Biol Chem 273, 16415-16420.
Oiso, N., Watanabe, K., and Kawada, A. (2006). Granulocyte colony-stimulating factor-induced Sweet syndrome in a healthy donor. Br J Haematol 135, 148.
Okugawa, S., Ota, Y., Kitazawa, T., Nakayama, K., Yanagimoto, S., Tsukada, K., Kawada, M., and Kimura, S. (2003). Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am J Physiol Cell Physiol 285, C399-408.
Paraskevi, A., Theodoropoulos, G., Papaconstantinou, I., Mantzaris, G., Nikiteas, N., and Gazouli, M. (2012). Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6, 900-904.
Pargellis, C., Tong, L., Churchill, L., Cirillo, P.F., Gilmore, T., Graham, A.G., Grob, P.M., Hickey, E.R., Moss, N., Pav, S., et al. (2002). Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 9, 268-272.
Paschoud, S., Dogar, A.M., Kuntz, C., Grisoni-Neupert, B., Richman, L., and Kuhn, L.C. (2006). Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 26, 8228-8241.
Patel, S.B., Cameron, P.M., O'Keefe, S.J., Frantz-Wattley, B., Thompson, J., O'Neill, E.A., Tennis, T., Liu, L., Becker, J.W., and Scapin, G. (2009). The three-dimensional structure of MAP kinase p38beta: different features of the ATP-binding site in p38beta compared with p38alpha. Acta Crystallogr D Biol Crystallogr 65, 777-785.
Patil, C., Zhu, X., Rossa, C., Jr., Kim, Y.J., and Kirkwood, K.L. (2004). p38 MAPK regulates IL-1beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest 33, 213-233.
Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22, 153-183.
Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3, 687-694.
Pimienta, G., and Pascual, J. (2007). Canonical and alternative MAPK signaling. Cell Cycle 6, 2628-2632.
Prakash, A., Medhi, B., and Chopra, K. (2013). Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-beta induced experimental model of Alzheimer's disease. Pharmacol Biochem Behav 110, 46-57.
Putland, R.A., Sassinis, T.A., Harvey, J.S., Diamond, P., Coles, L.S., Brown, C.Y., and Goodall, G.J. (2002b). RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol Cell Biol 22, 1664-1673.
Risco, A., del Fresno, C., Mambol, A., Alsina-Beauchamp, D., MacKenzie, K.F., Yang, H.T., Barber, D.F., Morcelle, C., Arthur, J.S., Ley, S.C., et al. (2012). p38gamma and p38delta kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc Natl Acad Sci U S A 109, 11200-11205.
Sandler, H., and Stoecklin, G. (2008). Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36, 491-496.
Schneider, A., Kruger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., Gassler, N., Mier, W., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098.
Schoenberg, D.R., and Maquat, L.E. (2012). Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13, 246-259.
Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M., and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol 10, 2950-2959.
Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W.F., Blackwell, T.K., and Anderson, P. (2004). MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23, 1313-1324.
Su, J., Cui, X., Li, Y., Mani, H., Ferreyra, G.A., Danner, R.L., Hsu, L.L., Fitz, Y., and Eichacker, P.Q. (2010). SB203580, a p38 inhibitor, improved cardiac function but worsened lung injury and survival during Escherichia coli pneumonia in mice. J Trauma 68, 1317-1327.
Sugiura, R., Satoh, R., Ishiwata, S., Umeda, N., and Kita, A. (2011). Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. J Signal Transduct 2011, 109746.
Sweeney, S.E., and Firestein, G.S. (2004). Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol 16, 231-237.
Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376.
Thomas, R., and Lipsky, P.E. (1996). Dendritic cells: origin and differentiation. Stem Cells 14, 196-206.
Tili, E., Michaille, J.J., Cimino, A., Costinean, S., Dumitru, C.D., Adair, B., Fabbri, M., Alder, H., Liu, C.G., Calin, G.A., et al. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179, 5082-5089.
Tran, H., Maurer, F., and Nagamine, Y. (2003). Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 23, 7177-7188.
van Raam, B.J., Drewniak, A., Groenewold, V., van den Berg, T.K., and Kuijpers, T.W. (2008). Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood 112, 2046-2054.
Vigorito, E., Kohlhaas, S., Lu, D., and Leyland, R. (2013). miR-155: an ancient regulator of the immune system. Immunol Rev 253, 146-157.
von Aulock, S., Diterich, I., Hareng, L., and Hartung, T. (2004). G-CSF: boosting endogenous production--a new strategy? Curr Opin Investig Drugs 5, 1148-1152.
Ward, S.G., Parry, R.V., Matthews, J., and O'Neill, L. (1997). A p38 MAP kinase inhibitor SB203580 inhibits CD28-dependent T cell proliferation and IL-2 production. Biochem Soc Trans 25, 304S.
Worm, J., Stenvang, J., Petri, A., Frederiksen, K.S., Obad, S., Elmen, J., Hedtjarn, M., Straarup, E.M., Hansen, J.B., and Kauppinen, S. (2009). Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 37, 5784-5792.
Wu, H., Wang, F., Hu, S., Yin, C., Li, X., Zhao, S., Wang, J., and Yan, X. (2012). MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal 24, 2179-2186.
Xing, B., Bachstetter, A.D., and Van Eldik, L.J. (2013). Deficiency in p38beta MAPK fails to inhibit cytokine production or protect neurons against inflammatory insult in in vitro and in vivo mouse models. PLoS One 8, e56852.
Yamamoto, A., Iwata, A., Saitoh, T., Tuchiya, K., Kanai, T., Tsujimoto, H., Hasegawa, A., Ishihama, A., and Ueda, S. (2002). Expression in Escherichia coli and purification of the functional feline granulocyte colony-stimulating factor. Vet Immunol Immunopathol 90, 169-177.
Yao, J., Mackman, N., Edgington, T.S., and Fan, S.T. (1997). Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 272, 17795-17801.
Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N., and Dixon, D.A. (2012). The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 10, 167-180.
Young, P.R., McLaughlin, M.M., Kumar, S., Kassis, S., Doyle, M.L., McNulty, D., Gallagher, T.F., Fisher, S., McDonnell, P.C., Carr, S.A., et al. (1997). Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272, 12116-12121.
Zarubin, T., and Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15, 11-18.
Zhang, G., and Li, Y.P. (2012). p38beta MAPK upregulates atrogin1/MAFbx by specific phosphorylation of C/EBPbeta. Skelet Muscle 2, 20.
Zhang, H., Chen, G.G., Zhang, Z., Chun, S., Leung, B.C., and Lai, P.B. (2012). Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis 17, 325-334.
Zhang, J., Shen, B., and Lin, A. (2007). Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci 28, 286-295.
Zhang, L., Yang, M., Wang, Q., Liu, M., Liang, Q., Zhang, H., and Xiao, X. (2011). HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 352, 11-17.
Zhang, Y.L., and Dong, C. (2005). MAP kinases in immune responses. Cell Mol Immunol 2, 20-27.
Zhou, W.D., Yang, H.M., Wang, Q., Su, D.Y., Liu, F.A., Zhao, M., Chen, Q.H., and Chen, Q.X. (2010). SB203580, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis by down-regulating proinflammatory cytokines and proteolytic factors in a mouse model. Hum Reprod 25, 3110-3116.
Zohlnhofer, D. (2008). G-CSF for left ventricular recovery after myocardial infarction: is it time to face reality? Cardiovasc Drugs Ther 22, 343-345.
Zsebo, K.M., Cohen, A.M., Murdock, D.C., Boone, T.C., Inoue, H., Chazin, V.R., Hines, D., and Souza, L.M. (1986). Recombinant human granulocyte colony stimulating factor: molecular and biological characterization. Immunobiology 172, 175-184.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61501-
dc.description.abstract顆粒性白血球群落刺激因子 (Granulocyte colony-stimulating factor, G-CSF)是造血性醣蛋白生長因子的成員之一,具有促進白血球增生、分化、成熟及移動的功能。主要由巨噬細胞、內皮細胞所分泌,當LPS、IL-1β 或TNF-α 刺激時,透過轉錄及後轉錄增加 G-CSF 表現。G-CSF mRNA 穩定度主要由三端非轉譯區 (3’ untranslated region, 3’UTR) 的 ARE (AU-rich element) 及 SLDE (stem-loop destabilizing element)所調控。多篇文獻報導在 p38 MAPK 訊息路徑活化下,給予
SB203580 會降低 3’UTR 帶有 ARE 細胞激素的表現。然而,實驗室先前的研究結果發現,在有或沒有LPS刺激下,於RAW264.7細胞中給予SB203580可透過3’UTR的SLDE序列穩定G-CSF mRNA進而增加其表現。顯示 SB203580 增加G-CSF表現可能不是透過p38α/β MAPK所導致的。本研究目的首先要確認 SLDE 及p38α/β MAPK 在 SB203580 增加 G-CSF mRNA 穩定度的作用中扮演的角色;接著用microarray 分析探討是否有其他基因也會受到 SB203580 所誘導,並分析這些被誘導的基因其 3’UTR 是否帶有類似 SLDE 的序列。最後探討目前已知與發炎反應相關的miRNA是否參與 SB203580 增加G-CSF mRNA 穩定度的作用。以site-direct mutagenesis 改變SLDE的序列發現 SB203580 是透過 SLDE序列穩定G-CSF mRNA ,與莖-環結構較無關。將RAW264.7細胞中p38α或p38β MAPK knockdown後發現雖然 LPS 誘導的G-CSF 表現會受到p38α MAPK knockdown 的影響而下降,然而,在有或沒有 LPS 刺激下,SB203580 可在p38α 或p38β MAPK knockdown 細胞增加 G-CSF mRNA 穩定度及蛋白質表現。Microarray實驗結果找到在有或沒有 LPS 刺激下 SB203580 都能增加其表現量共 21個基因,其中 Gnpda1 3’UTR也帶有類似 SLDE 序列。最後利用miRNA PCR array實驗發現目前已知與發炎反應調節相關的 miRNA中有 7個會受 SB203580 所調節,由 miRWalk 預測軟體分析發現G-CSF 3’UTR 中並沒有這 7個 miRNA的結合位子,顯示 SB203580 可能不是透過這 7 個 miRNA 直接調控 G-CSF 的表現,但我們也不能完全排除這些miRNA間接調控的可能。綜合以上實驗結果,SB203580透過G-CSF 3’UTR的SLDE序列穩定mRNA進而增加其表現的作用機制與 p38α/β MAPK無關,可能是透過其他機制來調節。
zh_TW
dc.description.abstractGranulocyte-colony stimulating factor (G-CSF) is a member of the glycoprotein growth factor family that regulates granulocyte production, neutrophil maturation and mobilization. The main sources of G-CSF are fibroblast cells, endothelial cells and macrophages. The production of G-CSF is induced by inflammatory stimuli, such as LPS, TNF-α and IL-1β. The expression of G-CSF is regulated at both transcriptional
and posttranscriptional levels. In the 3’-UTR of G-CSF mRNA, there are two destabilizing elements, AU-rich elements (ARE) and stem-loop destabilizing element
(SLDE), these elements have been identified conserved among different species. Our previous results showed that SB203580, a pyridinyl imidazole inhibitor of p38α/β MAPK, enhances G-CSF production by increasing mRNA stability in the presence or absence of LPS. Moreover, the sequence of SLDE in G-CSF 3’UTR is identified
essential for SB203580-induced increase of mRNA using a luciferase-G-CSF 3’UTR reporter system. In this study, our first aim is to further confirm the role of SLDE in SB203580-induced increase of G-CSF mRNA stability; and to investigate the involvement of p38α/β MAPK in SB203580-induced G-CSF expression. Second aim is
to determine if SB203580 can up-regulate other transcripts and if 3’-UTR of these transcripts also contain SLDE sequence. Third aim is to explore whether miRNA involves in SB203580-induced G-CSF expression. Using site-direct mutagenesis mutated one or two bases on SLDE, we further confirmed that SLDE in G-CSF 3’UTR is critical for SB203580-induced increase of G-CSF mRNA. The p38α and p38β MAPK were knockdown separately in RAW264.7 by infected with lentivirus carrying specific shRNA. We found that SB203580 induces increase of G-CSF mRNA in p38α or p38β knockdown cells in the presence or absence of LPS. The results indicate that SB203580-induced increase of G-CSF expression is independent of p38α or p38β MAPK. In microarray analysis, 21 genes were identified to be up-regulated by SB203580 in the presence or absence of LPS. Only one of 21 genes, Gnpda1, contains a SLDE-like sequence in the 3’UTR. Moreover, we investigate the involvement of inflammatory-related miRNAs in this mechanism by miRNA PCR array. Seven miRNAs were found to be regulated by SB203580, but 3’UTR of G-CSF does not contain binding site for these miRNAs. The results indicate that these inflammatory-related miRNA may not directly involve in SB203580-induced increase of G-CSF expression. But the indirect involvements of these miRNAs cannot be exclude. Taken together, our data show that SB203580 increases both G-CSF mRNA and protein levels by stabilizing G-CSF mRNA through the conserved SLDE sequence in the 3’UTR; however, the effect is independent of p38α/β MAPK.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:04:24Z (GMT). No. of bitstreams: 1
ntu-102-R00442017-1.pdf: 4042321 bytes, checksum: 034b10458b3fd3e40a4c33e519078bf3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 VIII
Abstract X
第一章 緒論 1
第一節 文獻回顧 2
第二節 研究動機及目的 20
第二章、材料與方法 22
第一節 實驗材料 23
第二節 細胞培養 24
第三節 細胞內RNA抽取與基因表現量分析 25
第四節 製備慢病毒 (lentivirus)與慢病毒的感染 (Infection) 28
第五節、蛋白質表現量分析 32
第六節 質體的建構 36
第七節 螢火蟲冷光酶活性分析 (Luciferase reporter assay) 39
第八節 微陣列分析 (microarray) 41
第九節 miScript miRNA PCR Array 42
第十節 資料統計分析 43
第三章 實驗結果 44
第一節 進一步探討SB203580是否透過G-CSF 3’UTR中SLDE序列增加其mRNA 穩定度 45
第二節 探討p38α 及p38β MAPK是否參與LPS所誘導G-CSF mRNA表現的作用機制 46
第三節 探討p38α 及p38β MAPK是否參與SB203580更增加LPS所誘導的G-CSF mRNA表現的作用機制 47
第四節 探討單獨給予SB203580的情況下p38α 及p38β MAPK是否參與增加G-CSF表現的作用機制 48
第五節 利用mouse microarray分析探討是否有其他mRNA也會受到SB203580誘導增加其表現 49
第六節 利用miRNA PCR Array探討是否有miRNA參與SB203580增加G-CSF mRNA表現的作用機制 51
第四章 討論 53
第一節 SB203580透過G-CSF 3’UTR的SLDE增加G-CSF mRNA穩定度 54
第二節 p38α/β MAPK在LPS誘導產生G-CSF過程中扮演的角色 55
第三節 給予LPS刺激的p38α/β MAPK knockdown細胞中,SB203580對不同細胞激素的調節 56
第四節 在p38α/β MAPK knockdown細胞中單獨給予SB203580對不同細胞激素的調節 57
第五節 由mouse microarray分析所篩選出SB203580所誘導表現的目標基因 59
第六節 miRNAs與RNA-binding proteins在此作用機制中可能扮演的角色 61
第七節 結論 63
第五章 圖表 65
補充 83
附錄 86
參考文獻 101
dc.language.isozh-TW
dc.subjectp38α/β MAPKzh_TW
dc.subjectmiRNAzh_TW
dc.subject顆粒性白血球群落刺激因子zh_TW
dc.subjectSLDE (stem-loop destabilizing element)zh_TW
dc.subjectSB203580zh_TW
dc.subjectstem-loop destabilizing element(SLDE)en
dc.subjectp38α/β MAPKen
dc.subjectmiRNAen
dc.subjectG-CSFen
dc.subjectSB203580en
dc.titlep38α/β MAPK在SB203580誘導下增加RAW264.7細胞中G-CSF表現的角色zh_TW
dc.titleRoles of p38α/β MAPK in SB203580-induced G-CSF expression in RAW264.7en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬(Shwu-Fen Chang),姜安娜(An-Na Chiang),張博淵(PO-YUAN CHANG)
dc.subject.keyword顆粒性白血球群落刺激因子,p38α/β MAPK,SB203580,SLDE (stem-loop destabilizing element),miRNA,zh_TW
dc.subject.keywordG-CSF,p38α/β MAPK,SB203580,stem-loop destabilizing element(SLDE),miRNA,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2013-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved