請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61438完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞(Shwu-Jen Liaw) | |
| dc.contributor.author | Zong-Sian Li | en |
| dc.contributor.author | 李宗憲 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:03:02Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | REFERENCES
1. Warren, J.W., et al., A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis, 1982. 146(6): p. 719-23. 2. Hooton, T.M., et al., Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis, 2010. 50(5): p. 625-63. 3. Jacobsen, S.M., et al., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev, 2008. 21(1): p. 26-59. 4. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 5. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 6. Li, X., D.E. Johnson, and H.L. Mobley, Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun, 1999. 67(6): p. 2822-33. 7. Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1994. 62(8): p. 3363-71. 8. Silverblatt, F.J. and I. Ofek, Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis, 1978. 138(5): p. 664-7. 9. Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33. 10. McDougald, D., et al., Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol, 2012. 10(1): p. 39-50. 11. Mobley, H.L., M.D. Island, and R.P. Hausinger, Molecular biology of microbial ureases. Microbiol Rev, 1995. 59(3): p. 451-80. 12. Griffith, D.P., D.M. Musher, and C. Itin, Urease. The primary cause of infection-induced urinary stones. Invest Urol, 1976. 13(5): p. 346-50. 13. Li, X., et al., Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun, 2002. 70(1): p. 389-94. 14. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 15. Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36. 16. Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58. 17. Swihart, K.G. and R.A. Welch, Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun, 1990. 58(6): p. 1861-9. 18. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 19. Allison, C. and C. Hughes, Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog, 1991. 75(298 Pt 3-4): p. 403-22. 20. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 21. Alavi, M. and R. Belas, Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol, 2001. 336: p. 29-40. 22. Fraser, G.M. and C. Hughes, Swarming motility. Curr Opin Microbiol, 1999. 2(6): p. 630-5. 23. Jin, T. and R.G. Murray, Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Can J Microbiol, 1988. 34(5): p. 588-93. 24. Stickler, D., et al., Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis, 1998. 17(9): p. 649-52. 25. Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201. 26. Allison, C., H.C. Lai, and C. Hughes, Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol, 1992. 6(12): p. 1583-91. 27. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 28. Fraser, G.M., J.C. Bennett, and C. Hughes, Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol, 1999. 32(3): p. 569-80. 29. Burkart, M., A. Toguchi, and R.M. Harshey, The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A, 1998. 95(5): p. 2568-73. 30. Belas, R., R. Schneider, and M. Melch, Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol, 1998. 180(23): p. 6126-39. 31. Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends Microbiol, 2008. 16(10): p. 496-506. 32. Leon, R. and G. Espin, flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology, 2008. 154(Pt 6): p. 1719-28. 33. Rowley, G., et al., Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol, 2006. 4(5): p. 383-94. 34. Akerley, B.J., P.A. Cotter, and J.F. Miller, Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell, 1995. 80(4): p. 611-20. 35. Pearson, M.M. and H.L. Mobley, Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol, 2008. 69(2): p. 548-58. 36. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 37. Hay, N.A., et al., A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol, 1999. 181(7): p. 2008-16. 38. Belas, R., Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol, 1994. 176(23): p. 7169-81. 39. Belas, R., M. Goldman, and K. Ashliman, Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol, 1995. 177(3): p. 823-8. 40. Hay, N.A., et al., A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol, 1997. 179(15): p. 4741-6. 41. O'Hara, C.M., F.W. Brenner, and J.M. Miller, Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev, 2000. 13(4): p. 534-46. 42. Bonnet, R., et al., Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother, 1999. 43(11): p. 2671-7. 43. Reading, N.C., et al., A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol, 2007. 189(6): p. 2468-76. 44. Njoroge, J. and V. Sperandio, Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infect Immun, 2012. 80(2): p. 688-703. 45. Hughes, D.T. and V. Sperandio, Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol, 2008. 6(2): p. 111-20. 46. Reading, N.C., et al., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5889-94. 47. Rasko, D.A., et al., Targeting QseC signaling and virulence for antibiotic development. Science, 2008. 321(5892): p. 1078-80. 48. Okada, A., et al., Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol, 2007. 422: p. 386-95. 49. Nicolle, L.E., Catheter-related urinary tract infection. Drugs Aging, 2005. 22(8): p. 627-39. 50. Clarke, M.B., et al., The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10420-5. 51. Sperandio, V., et al., Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8951-6. 52. Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol, 2009. 191(4): p. 1248-57. 53. Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43(3): p. 1068-71. 54. Ganaie, A.A., et al., Thermostable hexameric form of Eis (Rv2416c) protein of M. tuberculosis plays an important role for enhanced intracellular survival within macrophages. PLoS One, 2011. 6(11): p. e27590. 55. Beynon, L.M., et al., Characterization of the lipopolysaccharide O antigens of Actinobacillus pleuropneumoniae serotypes 9 and 11: antigenic relationships among serotypes 9, 11, and 1. J Bacteriol, 1992. 174(16): p. 5324-31. 56. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 57. Fukuoka, T., et al., Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother, 1991. 35(3): p. 529-32. 58. Jiang, S.S., et al., Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother, 2010. 54(5): p. 2000-9. 59. Jansen, A.M., et al., Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun, 2004. 72(12): p. 7294-305. 60. Li, X., et al., Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol, 2002. 45(3): p. 865-74. 61. Clemmer, K.M. and P.N. Rather, Regulation of flhDC expression in Proteus mirabilis. Res Microbiol, 2007. 158(3): p. 295-302. 62. Pearson, M.M. and H.L. Mobley, The type III secretion system of Proteus mirabilis HI4320 does not contribute to virulence in the mouse model of ascending urinary tract infection. J Med Microbiol, 2007. 56(Pt 10): p. 1277-83. 63. Reading, N.C., et al., A transcriptome study of the QseEF two-component system and the QseG membrane protein in enterohaemorrhagic Escherichia coli O157 : H7. Microbiology, 2010. 156(Pt 4): p. 1167-75. 64. Moreira, C.G. and V. Sperandio, Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun, 2012. 80(12): p. 4344-53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61438 | - |
| dc.description.abstract | Proteus mirabilis is a facultative anaerobic, Gram-negative bacterium and a member of the Enterobacteriaceae family. It belongs to normal flora of human intestine. It usually causes, however, urinary tract infection (UTI), and leads to kidney disease, pneumonia and septicemia in individuals with long-term catheterization or with structural or functional abnormalities in the urinary tract.
QseEGF, first described in enterohaemorrhagic Escherichia coli, is one of two-component systems in bacteria. QseEGF can sense signals like bacterial AI-2 and epinephrine from host cells. Activation of QseEGF regulates virulence genes, like LEE genes, causing attaching and effacing lesions (A/E lesions), or Shiga toxin, causing hemolytic-uremic syndrome (HUS). To understand the role of QseEGF in P. mirabilis, in this study we constructed qseEGF mutant. We found mutation in qseEGF caused pleiotropic phenotypic effects in P. mirabilis. The swarming ability of qseEGF mutant was lower than wild-type (Wt). In this regard, production of swarmer cells of the qseEGF mutant was delayed and swarm cell length was much shorter than Wt. The swarming ability was restored to near the wt level in the QseEGF-complemented strain. Besides, we demonstrated the qseEGF mutant displayed decreased haemolysin ability and cytotoxicity. We next explore why QseEGF regulates swarming motility. We found mutation in qseEGF decreased flhDC and flagella expression in swarming condition. In addition, we tested possible signals of QseEGF. We found urea inhibited the swarming motility of Wt but not in qseEGF mutant. Reporter assay also showed flhDC expression of Wt but not qseEGF mutant was decreased in the presence of urea. We thought that urea was one negative signal for the QseEGF signaling pathway. To further understand the role of qseEGF gene in swarming, we tested rcsB, which negatively regulates flhDC expression, expression in Wt and qseEGF mutant. We found expression rcsB in qseEGF mutant was higher than Wt. Knowing MR/P frimbriae are required for adhering to urinary tract epithelial cells of mouse, we examined the role of QseEGF in the expression of MR/P fimbriae and found that qseEGF mutant didn’t produce MrpA protein, the subunit of MR/P frimbriae, by western blot. In summary, we found that QseEGF plays an important role in swarming of P. mirabilis by sensing the surface contact stimulus or urea to positively or negatively regulate flhDC expression. Besides, QseEGF also regulates expression of virulence factors such as MR/P fimbriae and hence might contribute to UTI of P. mirabilis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:03:02Z (GMT). No. of bitstreams: 1 ntu-102-R00424024-1.pdf: 9412168 bytes, checksum: 0e19936a781809292e4b5cf438f27c40 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 第一節 奇異變形桿菌(Proteus mirabilis)介紹 1 第二節 Quorum sensing E. coli regulator EGF (qseEGF)的基本介紹 7 第三節 研究動機與目的 8 第四節 實驗設計 9 第二章 實驗材料與方法 10 第一節 實驗材料 10 第二節 qseEGF(PMI1874,PMI1873,PMI1872) knockout方法 12 第三節 分析突變株表現型(phenotype)及毒力因子 (virulence factor) 表現 23 第四節 qseEGF參與之基因調控分析 35 第三章 實驗結果 50 第一節 qseEGF Knockout strain 建立 50 第二節 qseEGF knockout 突變株之表現型之分析 51 第三節 qseEGF knockout 突變株毒力因子分析 52 第四節 分析qseEGF 可能調控的路徑 53 第四章 結論與討論 56 第一節 結論 56 第二節 其他菌種QseEGF 之研究比較 57 第三節 在文章中引用到Equation Number 58 第四節 未來展望 59 Chapter 5 表 60 Chapter 6 圖 64 Chapter 7 附錄 85 REFERENCE 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | 雙組成系統 | zh_TW |
| dc.subject | 尿素 | zh_TW |
| dc.subject | 毒力 | zh_TW |
| dc.subject | 表面移行 | zh_TW |
| dc.subject | qseEGF | en |
| dc.subject | Two-compenent system(TCS) | en |
| dc.subject | swarming | en |
| dc.subject | virulence | en |
| dc.subject | urea | en |
| dc.title | 奇異變形桿菌qseEGF之探討 | zh_TW |
| dc.title | Characterization of Proteus mirabilis qseEGF | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍(Lee-Jene Teng),賴信志(Hsin-Chih Lai),楊翠青(Tsuey-Ching Yang) | |
| dc.subject.keyword | 雙組成系統,奇異變形桿菌,表面移行,毒力,尿素, | zh_TW |
| dc.subject.keyword | qseEGF,Two-compenent system(TCS),swarming,virulence,urea, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
