請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑美 | |
| dc.contributor.author | Yen-Tung Lin | en |
| dc.contributor.author | 林姸彤 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:02:46Z | - |
| dc.date.available | 2023-08-05 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | 參考文獻
Anand-Apte B, Zetter BR, Viswanathan A, Qiu RG, Chen J, Ruggieri R, Symons M (1997) Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways. Journal of Biological Chemistry 272: 30688-30692 Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS (2007) Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Experimental Cell Research 313: 3616-3623 Bhagatte Y, Lodwick D, Storey N (2012) Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death & Disease 3: e345 Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100: 2692-2695 Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1287: 121-149 Cagnol S, Chambard JC (2010) ERK and cell death: Mechanisms of ERK‐induced cell death–apoptosis, autophagy and senescence. FEBS Journal 277: 2-21 Carlier MF, Clainche CL, Wiesner S, Pantaloni D (2003) Actin‐based motility: from molecules to movement. Bioessays 25: 336-345 Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species Reaction pathways and antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology 20: 1716-1723 Chen KH, Tung PY, Wu JC, Chen Y, Chen PC, Huang SH, Wang SM (2008) An acidic extracellular pH induces Src kinase-dependent loss of β-catenin from the adherens junction. Cancer Letters 267: 37-48 Chen P-N, Hsieh Y-S, Chiou H-L, Chu S-C (2005) Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions 156: 141-150 Chen Y, Kung HN, Chen CH, Huang SH, Chen KH, Wang SM (2011) Acidic extracellular pH induces p120-catenin-mediated disruption of adherens junctions via the Src kinase-PKCδ pathway. FEBS Letters 585: 705-710 Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H (2004) Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Experimental Cell Research 300: 297-307 Cook-Mills JM, Marchese ME, Abdala-Valencia H (2011) Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxidants & Redox Signaling 15: 1607-1638 Cooper JA, Howell B (1993) The when and how of Src regulation. Cell 73: 1051-1054 Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2: 161-174 Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA, Walden PD (2001) Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 22: 1271-1279 Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Research 61: 6020-6024 Fukuyama T, Ogita H, Kawakatsu T, Inagaki M, Takai Y (2005) Activation of Rac by cadherin through the c-Src–Rap1–phosphatidylinositol 3-kinase–Vav2 pathway. Oncogene 25: 8-19 Gabarra-Niecko V, Schaller MD, Dunty JM (2003) FAK regulates biological processes important for the pathogenesis of cancer. Cancer and Metastasis Reviews 22: 359-374 Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4: 891-899 Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology 2: 793-805 Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Molecular and Cellular Biology 25: 6391-6403 Giannoni E, Taddei ML, Chiarugi P (2010) Src redox regulation: again in the front line. Free Radical Biology and Medicine 49: 516-527 Gomez D, Skilton G, Alonso D, Kazanietz M (1999) The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports 6: 1363-1433 Griffiths J, McIntyre D, Howe F, Stubbs M (2001) Why Are Cancers Acidic? A Carrier‐Mediated Diffusion Model for H+ Transport in the Interstitial Fluid. In The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity: Novartis Foundation Symposium 240. Wiley Online Library, pp 46-67 Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509-514 Harfouche R, Malak NA, Brandes RP, Karsan A, Irani K, Hussain SN (2005) Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. The FASEB Journal 19: 1728-1730 Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research 8: 1284-1291 Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770-776 Hordijk PL (2006) Regulation of NADPH Oxidases The Role of Rac Proteins. Circulation Research 98: 453-462 Hsieh H-L, Wang H-H, Wu W-B, Chu P-J, Yang C-M (2010) Transforming growth factor-b1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-kB pathways. J Neuroinflammation 7: 88 Hu C-T, Wu J-R, Cheng C-C, Wang S, Wang H-T, Lee M-C, Wang L-J, Pan S-M, Chang T-Y, Wu W-S (2011) Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clinical & Experimental Metastasis 28: 851-863 Hu P, O'Keefe EJ, Rubenstein DS (2001) Tyrosine Phosphorylation of Human Keratinocyte &bgr;-Catenin and Plakoglobin Reversibly Regulates their Binding to E-Cadherin and &agr;-Catenin. Journal of Investigative Dermatology 117: 1059-1067 Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. Journal of Cell Science 117: 4619-4628 Hurd TR, DeGennaro M, Lehmann R (2012) Redox regulation of cell migration and adhesion. Trends in Cell Biology 22: 107-115 Ilic D, Damsky CH, Yamamoto T (1997) Focal adhesion kinase: at the crossroads of signal transduction. Journal of Cell Science 110: 401-407 Jacobi C, Ordemann J, Bohm B, Zieren H, Liebenthal C, Volk H, Muller J (1997) The influence of laparotomy and laparoscopy on tumor growth in a rat model. Surgical Endoscopy 11: 618-621 Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912 Juliano R, Reddig P, Alahari S, Edin M, Howe A, Aplin A (2004) Integrin regulation of cell signalling and motility. Biochemical Society Transactions 32: 443-446 Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248 Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359-369 Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL‐6 induces AGS gastric cancer cell invasion via activation of the c‐Src/RhoA/ROCK signaling pathway. International Journal of Cancer 120: 2600-2608 Lo I-C, Shih J-M, Jiang MJ (2005) Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science 12: 377-388 Lyons PD, Dunty JM, Schaefer EM, Schaller MD (2001) Inhibition of the catalytic activity of cell adhesion kinase β by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. Journal of Biological Chemistry 276: 24422-24431 Muller B, Fischer B, Kreutz W (2000) An acidic microenvironment impairs the generation of non‐major histocompatibility complex‐restricted killer cells. Immunology 99: 375-384 Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & redox signaling 7: 472-481 McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nature Reviews Cancer 5: 505-515 Meng X, Jin Y, Yu Y, Bai J, Liu G, Zhu J, Zhao Y, Wang Z, Chen F, Lee K (2009) Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. British Journal of Cancer 101: 327-334 Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem. J 417: 1-13 Nam S, Kim D, Cheng JQ, Zhang S, Lee J-H, Buettner R, Mirosevich J, Lee FY, Jove R (2005) Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Research 65: 9185-9189 Nimnual AS, Taylor LJ, Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nature Cell Biology 5: 236-241 Nobes C, Hall A (1995) Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochemical Society Transactions 23: 456-459 Park H, Lyons J, Ohtsubo T, Song C (1999) Acidic environment causes apoptosis by increasing caspase activity. British Journal of Cancer 80: 1892-7 Park TJ, Kim JY, Oh SP, Kang SY, Kim BW, Wang HJ, Song KY, Kim HC, Lim IK (2008) TIS21 negatively regulates hepatocarcinogenesis by disruption of cyclin B1–Forkhead box M1 regulation loop. Hepatology 47: 1533-1543 Peng YS, Lin YT, Chen Y, Hung KY, Wang SM (2012) Effects of indoxyl sulfate on adherens junctions of endothelial cells and the underlying signaling mechanism. Journal of Cellular Biochemistry 113: 1034-1043 Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, de Herreros AG, Dunach M (2003) p120 Catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin-α-catenin Interaction. Molecular and Cellular Biology 23: 2287-2297 Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Current Medicinal Chemistry 11: 1163-1182 Riemann A, Schneider B, Ihling A, Nowak M, Sauvant C, Thews O, Gekle M (2011) Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One 6: e22445 Rofstad E (2000) Microenvironment-induced cancer metastasis. International Journal of Radiation Biology 76: 589-605 Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research 66: 6699-6707 Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 71: 435-478 Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1692: 77-102 Schmitz U, Thommes K, Beier I, Vetter H (2002) Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications 291: 687-691 Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia (New York, NY) 5: 135-45 Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. Journal of Biological Chemistry 283: 29292-29300 Shimizu H, Hirose Y, Nishijima F, Tsubakihara Y, Miyazaki H (2009) ROS and PDFG-β receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. American Journal of Physiology-Cell Physiology 297: C389-C396 Shono T, Kanetake H, Kanda S (2001) The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research 264: 275-283 Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology 2: 249-256 Song MK, Kim YJ, Song M, Choi HS, Park YK, Ryu JC (2011) Polycyclic aromatic hydrocarbons induce migration in human hepatocellular carcinoma cells (HepG2) through reactive oxygen species‐mediated p38 MAPK signal transduction. Cancer Science 102: 1636-1644 Struckmann K, Schraml P, Simon R, Elmenhorst K, Mirlacher M, Kononen J, Moch H (2004) Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Research 64: 1632-1638 Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research 49: 4373-4384 Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology 279: L1005-L1028 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell biology 39: 44-84 Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research 49: 6449-6465 Wang Z, Castresana MR, Newman WH (2004) Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology 36: 49-56 Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells–over and over and over again. Nature Cell Biology 4: E97-E100 Weber DS, Taniyama Y, Rocic P, Seshiah PN, Dechert MA, Gerthoffer WT, Griendling KK (2004) Phosphoinositide-Dependent Kinase 1 and p21-Activated Protein Kinase Mediate Reactive Oxygen Species–Dependent Regulation of Platelet-Derived Growth Factor–Induced Smooth Muscle Cell Migration. Circulation Research 94: 1219-1226 Wehrle-Haller B, Imhof BA (2003) Actin, microtubules and focal adhesion dynamics during cell migration. The International Journal of Biochemistry & Cell biology 35: 39-50 Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annual Review of Cell and Developmental Biology 18: 247-288 Wenqing X, Harrison S, Eck M (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595-602 Westermarck J, KAHARI V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal 13: 781-792 Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA, Terada LS (2005) Subcellular targeting of oxidants during endothelial cell migration. The Journal of Cell Biology 171: 893-904 Xia Y, Karin M (2004) The control of cell motility and epithelial morphogenesis by Jun kinases. Trends in Cell Biology 14: 94-101 Yamagata M, Hasuda K, Stamato T, Tannock I (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. British Journal of Cancer 77: 1726-1731 Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1773: 642-652 Yu D-H, Qu C-K, Henegariu O, Lu X, Feng G-S (1998) Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. Journal of Biological Chemistry 273: 21125-21131 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61425 | - |
| dc.description.abstract | 細胞外酸性pH (pHe) 為腫瘤細胞生長環境的特徵之一,並且酸性pHe會影響腫瘤細胞移行及侵犯能力。我們研究室先前已證實肝癌細胞(HepG2)經酸化處理後,藉由Src活化並破壞adherens junction(AJ),而使細胞分離,促進細胞移行能力。本實驗更進一步探討酸性pHe是否經由ROS,而增加癌細胞移行能力。實驗結果顯示,對照組pH 7.4中細胞呈緊密接合的群聚狀態,pH 6.6處理後細胞變成分散且扁平,伴隨細胞移行能力增加。利用dichlorofluorescein diacetate(DCFDA)及dihydroethidium(DHE)兩種指示劑以流式細胞儀檢查,發現pH 6.6處理後細胞內ROS量明顯上升,進而使用專一偵測粒線體內ROS螢光探針MitosoxTM,也可測得ROS量增加,證明ROS可能來自於粒線體。而這些ROS可以刺激細胞移行,因為抗氧化劑dithiothreitol(DTT)能阻止因pH 6.6處理引起的細胞移行。同時,pH 6.6處理30分鐘後ERK的磷酸化增加,持續至90分鐘為止。其次,利用抑制劑U0126抑制MEK及siRNA技術降低ERK的蛋白質表現量,皆可阻止因pH 6.6處理引起的細胞移行。此外DTT能有效抑制ERK磷酸化,說明ROS為ERK的上游分子。以pH 6.6處理後,觀察到黏附斑聚集在細胞膜邊緣且原先隨意分佈在細胞質中的微絲重新排列成平行方向性的張力絲。利用西方墨點法證明pH 6.6處理促使FAK磷酸化。此外,FAK抑制劑PF573228與siRNA技術減少FAK蛋白質表現量,皆能有效地減緩細胞移行,表示FAK參與調控酸性環境中細胞移行的機制。而利用DTT預處理可以減少因酸性刺激而產生的ERK和FAK磷酸化,說明ROS為這兩者的上游分子。進一步利用U0126及siERK預處理,顯示兩者皆能有效抑制FAK磷酸化且阻止細胞移行,表示存在ERK-FAK這條訊息傳遞路徑。另外,pH 6.6處理會促使Src與p130CAS活化,且Src抑制劑PP2能干擾酸性刺激而誘導的張力絲生成,意味著Src-p130CAS訊息傳遞路徑有參與調控張力絲形成。總結而言,本研究提供另一個不同的訊息傳遞路徑,說明肝癌細胞在酸性環境的刺激後,是藉由ROS/ERK/FAK訊息傳遞達到促進細胞移行。 | zh_TW |
| dc.description.abstract | An acidic extracellular pH (pHe) is a feature of the solid tumor microenvironment, which contributes to cell migration and invasion of tumor cells. Our previous study has demonstrated that acidic pHe disrupts the integrity of adherens junction of hepatocellular carcinoma (HepG2) by activation of Src, and promotes migration by cell dispersion. In this study, we investigated whether reactive oxygen species (ROS), a signaling messenger, initiated the signaling for acidic pHe-induced cell migration. Our results showed that incubation of HepG2 cells in pH 6.6 culture medium induced HepG2 cells from tight cluster to a dispersed and flattened cell profile, and this change was accompanied by an increase in cell migration ability. By flow cytometry, pH 6.6 treatment induced higher ROS levels compared to those at pH 7.4. Furthermore, ROS production mainly came from mitochondria by flow cytometry with MitosoxTM , mitochondria superoxide indicator. pH 6.6- induced-ROS increased cell migration, since an antioxidant dithiothreitol (DTT) prevented this effect. Extracellulr signal-regulated kinase (ERK) phosphorylation increased at 30 minutes after pH 6.6 stimulation, and sustained up to 90 minutes. Inhibition of ERK by a mitogen-activated protein kinase (MEK) inhibitor, U0126, or by siERK abrogated pH 6.6- induced cell migration of HepG2 cells. In addition, DTT blocked pH 6.6-induced phosophorylation of ERK. This suggests that ROS is the upstream event of ERK. In response to pH 6.6 treatment, focal adhesions clustered at peripheral cell membrane and randomly-distributed microfilaments were rearranged into parallel – oriented stress fibers. Western blotting analyses demonstrated that FAK was phosphorylated by pH 6.6 treatment. Furthermore, FAK played a key role in cell migration, since inhibition of FAK by a FAK inhibitor , PF573228, or by siFAK effectively prevented pH 6.6-induced cell migration. DTT pretreatment abrogated pH 6.6-induced phosophorylation of ERK and FAK. It implicates that ROS is the upstream event of both ERK and FAK. Inhibition of ERK by U0126 and siERK blocked pH 6.6- induced phosphorylation of FAK and retarded cell migration, indicating the presence of the ERK-FAK pathway. Besides, Src and p130CAS were activated by pH 6.6 treatment, and PP2 pretreatment disturbed pH 6.6-induced stress fiber formation, suggesting the involvement of the Src-p130CAS pathway in this event. In conclusion, this study characterize a novel signaling way responsible for enhancing the migratory behavior of HepG2 cells via the ROS- ERK- FAK signaling in an acidic microenvironment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:46Z (GMT). No. of bitstreams: 1 ntu-102-R00446005-1.pdf: 4099183 bytes, checksum: 1bf7f7037b33808a69e3c28943605987 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 ………………………………………… P. i
中文摘要 ……………………………………… P. ii∼P. iii 英文摘要 ……………………………………… P. iv∼P. v 前言 …………………………………………… P.2∼P.9 材料與方法 …………………………………… P.10∼P.17 結果 …………………………………………… P.18∼P.27 討論 …………………………………………… P.28∼P.36 參考文獻 ……………………………………… P.37∼P.43 圖片與圖片說明 ……………………………… P.44∼P.65 附錄、模式圖 ………………………………….. P.66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝癌細胞 | zh_TW |
| dc.subject | 酸性酸鹼值 | zh_TW |
| dc.subject | 細胞移行 | zh_TW |
| dc.subject | 活性氧 | zh_TW |
| dc.subject | 黏附斑 | zh_TW |
| dc.subject | 張力絲 | zh_TW |
| dc.subject | focal adhesion | en |
| dc.subject | HepG2 | en |
| dc.subject | acidic pH | en |
| dc.subject | cell migration | en |
| dc.subject | reactive oxygen species | en |
| dc.subject | stress fiber | en |
| dc.title | 細胞外酸性酸鹼值經ROS-ERK-FAK 訊息傳遞路徑促進HepG2細胞移行 | zh_TW |
| dc.title | An Acidic Extracellular pH Promotes Cell Migration of HepG2 via the ROS-ERK-FAK Signal Pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳建春,陳玉怜,鄭瓊娟,龔秀妮 | |
| dc.subject.keyword | 肝癌細胞,酸性酸鹼值,細胞移行,活性氧,黏附斑,張力絲, | zh_TW |
| dc.subject.keyword | HepG2,acidic pH,cell migration,reactive oxygen species,focal adhesion,stress fiber, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
