Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61425
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑美
dc.contributor.authorYen-Tung Linen
dc.contributor.author林姸彤zh_TW
dc.date.accessioned2021-06-16T13:02:46Z-
dc.date.available2023-08-05
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citation參考文獻
Anand-Apte B, Zetter BR, Viswanathan A, Qiu RG, Chen J, Ruggieri R, Symons M (1997) Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways. Journal of Biological Chemistry 272: 30688-30692
Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS (2007) Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Experimental Cell Research 313: 3616-3623
Bhagatte Y, Lodwick D, Storey N (2012) Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death & Disease 3: e345
Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100: 2692-2695
Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1287: 121-149
Cagnol S, Chambard JC (2010) ERK and cell death: Mechanisms of ERK‐induced cell death–apoptosis, autophagy and senescence. FEBS Journal 277: 2-21
Carlier MF, Clainche CL, Wiesner S, Pantaloni D (2003) Actin‐based motility: from molecules to movement. Bioessays 25: 336-345
Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species Reaction pathways and antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology 20: 1716-1723
Chen KH, Tung PY, Wu JC, Chen Y, Chen PC, Huang SH, Wang SM (2008) An acidic extracellular pH induces Src kinase-dependent loss of β-catenin from the adherens junction. Cancer Letters 267: 37-48
Chen P-N, Hsieh Y-S, Chiou H-L, Chu S-C (2005) Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions 156: 141-150
Chen Y, Kung HN, Chen CH, Huang SH, Chen KH, Wang SM (2011) Acidic extracellular pH induces p120-catenin-mediated disruption of adherens junctions via the Src kinase-PKCδ pathway. FEBS Letters 585: 705-710
Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H (2004) Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Experimental Cell Research 300: 297-307
Cook-Mills JM, Marchese ME, Abdala-Valencia H (2011) Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxidants & Redox Signaling 15: 1607-1638
Cooper JA, Howell B (1993) The when and how of Src regulation. Cell 73: 1051-1054
Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2: 161-174
Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA, Walden PD (2001) Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 22: 1271-1279
Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Research 61: 6020-6024
Fukuyama T, Ogita H, Kawakatsu T, Inagaki M, Takai Y (2005) Activation of Rac by cadherin through the c-Src–Rap1–phosphatidylinositol 3-kinase–Vav2 pathway. Oncogene 25: 8-19
Gabarra-Niecko V, Schaller MD, Dunty JM (2003) FAK regulates biological processes important for the pathogenesis of cancer. Cancer and Metastasis Reviews 22: 359-374
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4: 891-899
Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology 2: 793-805
Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Molecular and Cellular Biology 25: 6391-6403
Giannoni E, Taddei ML, Chiarugi P (2010) Src redox regulation: again in the front line. Free Radical Biology and Medicine 49: 516-527
Gomez D, Skilton G, Alonso D, Kazanietz M (1999) The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports 6: 1363-1433
Griffiths J, McIntyre D, Howe F, Stubbs M (2001) Why Are Cancers Acidic? A Carrier‐Mediated Diffusion Model for H+ Transport in the Interstitial Fluid. In The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity: Novartis Foundation Symposium 240. Wiley Online Library, pp 46-67
Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509-514
Harfouche R, Malak NA, Brandes RP, Karsan A, Irani K, Hussain SN (2005) Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. The FASEB Journal 19: 1728-1730
Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research 8: 1284-1291
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770-776
Hordijk PL (2006) Regulation of NADPH Oxidases The Role of Rac Proteins. Circulation Research 98: 453-462
Hsieh H-L, Wang H-H, Wu W-B, Chu P-J, Yang C-M (2010) Transforming growth factor-b1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-kB pathways. J Neuroinflammation 7: 88
Hu C-T, Wu J-R, Cheng C-C, Wang S, Wang H-T, Lee M-C, Wang L-J, Pan S-M, Chang T-Y, Wu W-S (2011) Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clinical & Experimental Metastasis 28: 851-863
Hu P, O'Keefe EJ, Rubenstein DS (2001) Tyrosine Phosphorylation of Human Keratinocyte &bgr;-Catenin and Plakoglobin Reversibly Regulates their Binding to E-Cadherin and &agr;-Catenin. Journal of Investigative Dermatology 117: 1059-1067
Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. Journal of Cell Science 117: 4619-4628
Hurd TR, DeGennaro M, Lehmann R (2012) Redox regulation of cell migration and adhesion. Trends in Cell Biology 22: 107-115
Ilic D, Damsky CH, Yamamoto T (1997) Focal adhesion kinase: at the crossroads of signal transduction. Journal of Cell Science 110: 401-407
Jacobi C, Ordemann J, Bohm B, Zieren H, Liebenthal C, Volk H, Muller J (1997) The influence of laparotomy and laparoscopy on tumor growth in a rat model. Surgical Endoscopy 11: 618-621
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912
Juliano R, Reddig P, Alahari S, Edin M, Howe A, Aplin A (2004) Integrin regulation of cell signalling and motility. Biochemical Society Transactions 32: 443-446
Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248
Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359-369
Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL‐6 induces AGS gastric cancer cell invasion via activation of the c‐Src/RhoA/ROCK signaling pathway. International Journal of Cancer 120: 2600-2608
Lo I-C, Shih J-M, Jiang MJ (2005) Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science 12: 377-388
Lyons PD, Dunty JM, Schaefer EM, Schaller MD (2001) Inhibition of the catalytic activity of cell adhesion kinase β by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. Journal of Biological Chemistry 276: 24422-24431
Muller B, Fischer B, Kreutz W (2000) An acidic microenvironment impairs the generation of non‐major histocompatibility complex‐restricted killer cells. Immunology 99: 375-384
Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & redox signaling 7: 472-481
McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nature Reviews Cancer 5: 505-515
Meng X, Jin Y, Yu Y, Bai J, Liu G, Zhu J, Zhao Y, Wang Z, Chen F, Lee K (2009) Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. British Journal of Cancer 101: 327-334
Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem. J 417: 1-13
Nam S, Kim D, Cheng JQ, Zhang S, Lee J-H, Buettner R, Mirosevich J, Lee FY, Jove R (2005) Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Research 65: 9185-9189
Nimnual AS, Taylor LJ, Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nature Cell Biology 5: 236-241
Nobes C, Hall A (1995) Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochemical Society Transactions 23: 456-459
Park H, Lyons J, Ohtsubo T, Song C (1999) Acidic environment causes apoptosis by increasing caspase activity. British Journal of Cancer 80: 1892-7
Park TJ, Kim JY, Oh SP, Kang SY, Kim BW, Wang HJ, Song KY, Kim HC, Lim IK (2008) TIS21 negatively regulates hepatocarcinogenesis by disruption of cyclin B1–Forkhead box M1 regulation loop. Hepatology 47: 1533-1543
Peng YS, Lin YT, Chen Y, Hung KY, Wang SM (2012) Effects of indoxyl sulfate on adherens junctions of endothelial cells and the underlying signaling mechanism. Journal of Cellular Biochemistry 113: 1034-1043
Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, de Herreros AG, Dunach M (2003) p120 Catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin-α-catenin Interaction. Molecular and Cellular Biology 23: 2287-2297
Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Current Medicinal Chemistry 11: 1163-1182
Riemann A, Schneider B, Ihling A, Nowak M, Sauvant C, Thews O, Gekle M (2011) Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One 6: e22445
Rofstad E (2000) Microenvironment-induced cancer metastasis. International Journal of Radiation Biology 76: 589-605
Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research 66: 6699-6707
Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 71: 435-478
Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1692: 77-102
Schmitz U, Thommes K, Beier I, Vetter H (2002) Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications 291: 687-691
Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia (New York, NY) 5: 135-45
Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. Journal of Biological Chemistry 283: 29292-29300
Shimizu H, Hirose Y, Nishijima F, Tsubakihara Y, Miyazaki H (2009) ROS and PDFG-β receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. American Journal of Physiology-Cell Physiology 297: C389-C396
Shono T, Kanetake H, Kanda S (2001) The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research 264: 275-283
Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology 2: 249-256
Song MK, Kim YJ, Song M, Choi HS, Park YK, Ryu JC (2011) Polycyclic aromatic hydrocarbons induce migration in human hepatocellular carcinoma cells (HepG2) through reactive oxygen species‐mediated p38 MAPK signal transduction. Cancer Science 102: 1636-1644
Struckmann K, Schraml P, Simon R, Elmenhorst K, Mirlacher M, Kononen J, Moch H (2004) Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Research 64: 1632-1638
Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research 49: 4373-4384
Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology 279: L1005-L1028
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell biology 39: 44-84
Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research 49: 6449-6465
Wang Z, Castresana MR, Newman WH (2004) Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology 36: 49-56
Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells–over and over and over again. Nature Cell Biology 4: E97-E100
Weber DS, Taniyama Y, Rocic P, Seshiah PN, Dechert MA, Gerthoffer WT, Griendling KK (2004) Phosphoinositide-Dependent Kinase 1 and p21-Activated Protein Kinase Mediate Reactive Oxygen Species–Dependent Regulation of Platelet-Derived Growth Factor–Induced Smooth Muscle Cell Migration. Circulation Research 94: 1219-1226
Wehrle-Haller B, Imhof BA (2003) Actin, microtubules and focal adhesion dynamics during cell migration. The International Journal of Biochemistry & Cell biology 35: 39-50
Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annual Review of Cell and Developmental Biology 18: 247-288
Wenqing X, Harrison S, Eck M (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595-602
Westermarck J, KAHARI V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal 13: 781-792
Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA, Terada LS (2005) Subcellular targeting of oxidants during endothelial cell migration. The Journal of Cell Biology 171: 893-904
Xia Y, Karin M (2004) The control of cell motility and epithelial morphogenesis by Jun kinases. Trends in Cell Biology 14: 94-101
Yamagata M, Hasuda K, Stamato T, Tannock I (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. British Journal of Cancer 77: 1726-1731
Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1773: 642-652
Yu D-H, Qu C-K, Henegariu O, Lu X, Feng G-S (1998) Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. Journal of Biological Chemistry 273: 21125-21131
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61425-
dc.description.abstract細胞外酸性pH (pHe) 為腫瘤細胞生長環境的特徵之一,並且酸性pHe會影響腫瘤細胞移行及侵犯能力。我們研究室先前已證實肝癌細胞(HepG2)經酸化處理後,藉由Src活化並破壞adherens junction(AJ),而使細胞分離,促進細胞移行能力。本實驗更進一步探討酸性pHe是否經由ROS,而增加癌細胞移行能力。實驗結果顯示,對照組pH 7.4中細胞呈緊密接合的群聚狀態,pH 6.6處理後細胞變成分散且扁平,伴隨細胞移行能力增加。利用dichlorofluorescein diacetate(DCFDA)及dihydroethidium(DHE)兩種指示劑以流式細胞儀檢查,發現pH 6.6處理後細胞內ROS量明顯上升,進而使用專一偵測粒線體內ROS螢光探針MitosoxTM,也可測得ROS量增加,證明ROS可能來自於粒線體。而這些ROS可以刺激細胞移行,因為抗氧化劑dithiothreitol(DTT)能阻止因pH 6.6處理引起的細胞移行。同時,pH 6.6處理30分鐘後ERK的磷酸化增加,持續至90分鐘為止。其次,利用抑制劑U0126抑制MEK及siRNA技術降低ERK的蛋白質表現量,皆可阻止因pH 6.6處理引起的細胞移行。此外DTT能有效抑制ERK磷酸化,說明ROS為ERK的上游分子。以pH 6.6處理後,觀察到黏附斑聚集在細胞膜邊緣且原先隨意分佈在細胞質中的微絲重新排列成平行方向性的張力絲。利用西方墨點法證明pH 6.6處理促使FAK磷酸化。此外,FAK抑制劑PF573228與siRNA技術減少FAK蛋白質表現量,皆能有效地減緩細胞移行,表示FAK參與調控酸性環境中細胞移行的機制。而利用DTT預處理可以減少因酸性刺激而產生的ERK和FAK磷酸化,說明ROS為這兩者的上游分子。進一步利用U0126及siERK預處理,顯示兩者皆能有效抑制FAK磷酸化且阻止細胞移行,表示存在ERK-FAK這條訊息傳遞路徑。另外,pH 6.6處理會促使Src與p130CAS活化,且Src抑制劑PP2能干擾酸性刺激而誘導的張力絲生成,意味著Src-p130CAS訊息傳遞路徑有參與調控張力絲形成。總結而言,本研究提供另一個不同的訊息傳遞路徑,說明肝癌細胞在酸性環境的刺激後,是藉由ROS/ERK/FAK訊息傳遞達到促進細胞移行。zh_TW
dc.description.abstractAn acidic extracellular pH (pHe) is a feature of the solid tumor microenvironment, which contributes to cell migration and invasion of tumor cells. Our previous study has demonstrated that acidic pHe disrupts the integrity of adherens junction of hepatocellular carcinoma (HepG2) by activation of Src, and promotes migration by cell dispersion. In this study, we investigated whether reactive oxygen species (ROS), a signaling messenger, initiated the signaling for acidic pHe-induced cell migration. Our results showed that incubation of HepG2 cells in pH 6.6 culture medium induced HepG2 cells from tight cluster to a dispersed and flattened cell profile, and this change was accompanied by an increase in cell migration ability. By flow cytometry, pH 6.6 treatment induced higher ROS levels compared to those at pH 7.4. Furthermore, ROS production mainly came from mitochondria by flow cytometry with MitosoxTM , mitochondria superoxide indicator. pH 6.6- induced-ROS increased cell migration, since an antioxidant dithiothreitol (DTT) prevented this effect. Extracellulr signal-regulated kinase (ERK) phosphorylation increased at 30 minutes after pH 6.6 stimulation, and sustained up to 90 minutes. Inhibition of ERK by a mitogen-activated protein kinase (MEK) inhibitor, U0126, or by siERK abrogated pH 6.6- induced cell migration of HepG2 cells. In addition, DTT blocked pH 6.6-induced phosophorylation of ERK. This suggests that ROS is the upstream event of ERK. In response to pH 6.6 treatment, focal adhesions clustered at peripheral cell membrane and randomly-distributed microfilaments were rearranged into parallel – oriented stress fibers. Western blotting analyses demonstrated that FAK was phosphorylated by pH 6.6 treatment. Furthermore, FAK played a key role in cell migration, since inhibition of FAK by a FAK inhibitor , PF573228, or by siFAK effectively prevented pH 6.6-induced cell migration. DTT pretreatment abrogated pH 6.6-induced phosophorylation of ERK and FAK. It implicates that ROS is the upstream event of both ERK and FAK. Inhibition of ERK by U0126 and siERK blocked pH 6.6- induced phosphorylation of FAK and retarded cell migration, indicating the presence of the ERK-FAK pathway. Besides, Src and p130CAS were activated by pH 6.6 treatment, and PP2 pretreatment disturbed pH 6.6-induced stress fiber formation, suggesting the involvement of the Src-p130CAS pathway in this event. In conclusion, this study characterize a novel signaling way responsible for enhancing the migratory behavior of HepG2 cells via the ROS- ERK- FAK signaling in an acidic microenvironment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:46Z (GMT). No. of bitstreams: 1
ntu-102-R00446005-1.pdf: 4099183 bytes, checksum: 1bf7f7037b33808a69e3c28943605987 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 ………………………………………… P. i
中文摘要 ……………………………………… P. ii∼P. iii
英文摘要 ……………………………………… P. iv∼P. v
前言 …………………………………………… P.2∼P.9
材料與方法 …………………………………… P.10∼P.17
結果 …………………………………………… P.18∼P.27
討論 …………………………………………… P.28∼P.36
參考文獻 ……………………………………… P.37∼P.43
圖片與圖片說明 ……………………………… P.44∼P.65
附錄、模式圖 ………………………………….. P.66
dc.language.isozh-TW
dc.subject肝癌細胞zh_TW
dc.subject酸性酸鹼值zh_TW
dc.subject細胞移行zh_TW
dc.subject活性氧zh_TW
dc.subject黏附斑zh_TW
dc.subject張力絲zh_TW
dc.subjectfocal adhesionen
dc.subjectHepG2en
dc.subjectacidic pHen
dc.subjectcell migrationen
dc.subjectreactive oxygen speciesen
dc.subjectstress fiberen
dc.title細胞外酸性酸鹼值經ROS-ERK-FAK 訊息傳遞路徑促進HepG2細胞移行zh_TW
dc.titleAn Acidic Extracellular pH Promotes Cell Migration of HepG2 via the ROS-ERK-FAK Signal Pathwayen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳建春,陳玉怜,鄭瓊娟,龔秀妮
dc.subject.keyword肝癌細胞,酸性酸鹼值,細胞移行,活性氧,黏附斑,張力絲,zh_TW
dc.subject.keywordHepG2,acidic pH,cell migration,reactive oxygen species,focal adhesion,stress fiber,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved