請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳君泰(June-Tai Wu) | |
| dc.contributor.author | Li-Kai Chen | en |
| dc.contributor.author | 陳立凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:02:33Z | - |
| dc.date.available | 2015-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | 1. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407-412.
2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080. 3. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8: 35-46. 4. Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25: 2525-2538. 5. Schotta G, Ebert A, Reuter G (2003) SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica 117: 149-158. 6. Zhou BO, Wang SS, Xu LX, Meng FL, Xuan YJ, et al. (2010) SWR1 complex poises heterochromatin boundaries for antisilencing activity propagation. Mol Cell Biol 30: 2391-2400. 7. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, et al. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886-895. 8. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51-61. 9. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, et al. (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44: 928-941. 10. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128: 635-638. 11. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, et al. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480-485. 12. Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115: 110-122. 13. D'Costa A, Reifegerste R, Sierra S, Moses K (2006) The Drosophila ramshackle gene encodes a chromatin-associated protein required for cell morphology in the developing eye. Mech Dev 123: 591-604. 14. Field M, Tarpey PS, Smith R, Edkins S, O'Meara S, et al. (2007) Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. Am J Hum Genet 81: 367-374. 15. Ozturk N, VanVickle-Chavez SJ, Akileswaran L, Van Gelder RN, Sancar A (2013) Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A 110: 4980-4985. 16. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57-63. 17. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562-578. 18. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, et al. (2012) RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28: 1530-1532. 19. Ameur A, Zaghlool A, Halvardson J, Wetterbom A, Gyllensten U, et al. (2011) Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat Struct Mol Biol 18: 1435-1440. 20. Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18: 204-211. 21. Anders S (2009) Visualization of genomic data with the Hilbert curve. Bioinformatics 25: 1231-1235. 22. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31: 415-418. 23. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448-3449. 24. Mohan M, Herz HM, Shilatifard A (2012) SnapShot: Histone lysine methylase complexes. Cell 149: 498-498 e491. 25. Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14: 377-392. 26. Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20: 2922-2936. 27. Hedges DJ, Deininger PL (2007) Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616: 46-59. 28. Schneiderman JI, Orsi GA, Hughes KT, Loppin B, Ahmad K (2012) Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci U S A 109: 19721-19726. 29. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, et al. (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149: 214-231. 30. Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, et al. (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437: 1386-1390. 31. Song Y, Seol JH, Yang JH, Kim HJ, Han JW, et al. (2013) Dissecting the roles of the histone chaperones reveals the evolutionary conserved mechanism of transcription-coupled deposition of H3.3. Nucleic Acids Res 41: 5199-5209. 32. Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, et al. (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34: 961-972. 33. Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17: 655-667. 34. Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, et al. (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107: 591-603. 35. Olsen DP, Keshishian H (2012) Experimental methods for examining synaptic plasticity in Drosophila. Cold Spring Harb Protoc 2012: 162-173. 36. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, et al. (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454: 217-220. 37. Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60: 827-861. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61414 | - |
| dc.description.abstract | In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as DNA repair and transcription. Many factors that control chromatin biology play key roles in essential nuclear functions. These factors belong to four broad classes: histone modifiers, chromatin remodelers, histone variants and histone chaperones. In addition to histone modifiers with enzymatic activities, co-modifiers could interpret the histone modification codes and trigger subsequent changes of chromatin configurations, helping cells to response to stimuli and function accordingly. Based on how they recognize histone codes, these indirect histone modifiers are characterized by the modifications-interacting domains such as bromodomain or chromodomain. dBRWD3, a human BRWD3 homologue in Drosophila melanogaster, is characterized by its N-terminal WD40 repeats and two C-terminal bromodomains, which imply dBRWD3 as a probable indirect histone modifier via binding to acetylated histone. Mutations in human BRWD3 cause X-linked mental retardation, suggesting an essential role of BRWD3 in the nervous system. We therefore hypothesize that dBRWD3 regulates gene expression. To better address this possibility, the difference of whole gene expression between the wild-type and the dBRWD3 hypomorphic mutant flies, we conducted genome wide RNA-Sequencing (RNA-seq) using RNA isolated from adult brains of wild-type flies and dBRWD3 trans-heterozygous mutant flies. In RNA-seq analysis, we identified numbers of differential expression genes (DEGs) that are directly or indirectly modulated by dBRWD3. Chromatin states analysis shows that these putative dBRWD3 target genes have a propensity to localize in transcriptionally silent intergeneic chromatin regions (state 9) and heterochromatin-like regions embedded in euchromatin (state 8). Chromatin immunoprecipitation (ChIP) reveals that the dysregulation of gene expression in dBRWD3 mutant flies may be due to the loss of repressive histone marks or loss of H3.3 occupancy at transcription start site in up-regulated DEGs or down-regulated DEGs, respectively. Thus, dBRWD3 may act as a histone reader that regulates histone modification and deposition on chromatin to maintain normal chromatin status and timely gene expression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:33Z (GMT). No. of bitstreams: 1 ntu-102-R00448014-1.pdf: 6529404 bytes, checksum: ea3dac41e674649645d9eb194cdd51a1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Abstract 2
摘要 4 Chapter 1. Introduction 6 Chapter 2. A Global Transcription Role of dBRWD3 11 Chapter 3. The Property of Differential Expression Genes. 17 Chapter 4. dBRWD3 Maintaining Repressive Histone Marks at Up-regulated DEGs Loci 23 Chapter 5. dBRWD3 Genetically Interacts with yem-alpha Nucleosome Chaperone Complex and Histone Variant 3.3 28 Chapter 6. dBRWD3 Regulates hsp70 Gene Expression 35 Chapter 7. dBRWD3 Regulates dFMRP Protein Level 39 Discussion 42 Materials and Methods 47 References 60 Table 63 Figures 69 | |
| dc.language.iso | en | |
| dc.subject | H3.3 | zh_TW |
| dc.subject | 轉錄 | zh_TW |
| dc.subject | 組蛋白 | zh_TW |
| dc.subject | 染色質 | zh_TW |
| dc.subject | dBRWD3 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | YEM | zh_TW |
| dc.subject | H3.3 | en |
| dc.subject | transcription | en |
| dc.subject | nucleosome | en |
| dc.subject | chromatin | en |
| dc.subject | NGS | en |
| dc.subject | YEM | en |
| dc.subject | dBRWD3 | en |
| dc.title | dBRWD3在維持正常表觀遺傳體中的重要性 | zh_TW |
| dc.title | dBRWD3 is Essential for Maintaining Epigenomic integrity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳倩瑜(Chien-Yu Chen) | |
| dc.contributor.oralexamcommittee | 譚賢明(Bertrand Tan),潘俊良(Chun-Liang Pan),李秀香(Hsiu-Hsiang Lee) | |
| dc.subject.keyword | 染色質,組蛋白,轉錄,H3.3,YEM,dBRWD3,次世代定序, | zh_TW |
| dc.subject.keyword | dBRWD3,NGS,chromatin,nucleosome,transcription,H3.3,YEM, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
