請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61408
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
dc.contributor.author | Chih-Lieh Chen | en |
dc.contributor.author | 陳志烈 | zh_TW |
dc.date.accessioned | 2021-06-16T13:02:26Z | - |
dc.date.available | 2016-08-16 | |
dc.date.copyright | 2013-08-16 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-06 | |
dc.identifier.citation | [1] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 'Surface Studies by Scanning Tunneling Microscopy,' Physical Review Letters, vol. 49, pp.57-61, 1982.
[2] G. Binnig, C. F. Quate, and C. Gerber, 'Atomic Force Microscope,' Physical Review Letters, vol. 56, pp. 930-933, 1986. [3] H. Yamashita, A. Taoka, T. Uchihashi, T. Asano, T. Ando, and Y. Fukumori, 'Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM,' Journal of Molecular Biology, vol. 422, pp. 300-309, 2012. [4] J. Rouhi, S. Mahmud, S. D. Hutagalung, and N. Naderi, 'Field emission in lateral silicon diode fabricated by atomic force microscopy lithography,' Electronics Letters, vol.48, pp.712 -714, 2012. [5] B. P. Lathi, Linear Systems and Signals, 2nd ed. London, U.K.: Oxford Univ. Press, 2004. [6] D. Croft, G. Shed, and S. Devasia, 'Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application,' Journal of Dynamic Systems Measurement and Control, vol. 123, pp.35-43, 2001. [7] B. J. Kenton and K. K. Leang, 'Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner,' IEEE/ASME Transactions on Mechatronics, vol.17, no.2, pp.356,369, April 2012. [8] H. Watanabe, T. Uchihashi, T. Kobashi, M. Shibata, J. Nishiyama, R. Yasuda, and T. Ando, 'Wide-area scanner for high-speed atomic force microscopy,' Review of Scientific Instruments , vol.84, no.5, pp.053702,053702-10, May 2013. [9] Y. K. Yong, B. Bhikkaji, and S. O. R. Moheimani, 'Design, Modeling, and FPAA-Based Control of a High-Speed Atomic Force Microscope Nanopositioner,' IEEE/ASME Transactions on Mechatronics, vol.18, no.3, pp.1060,1071, June 2013. [10] S. Bashash, R. Saeidpourazar, and N. Jalili, 'Development, analysis and control of a high-speed laser-free atomic force microscope,' Review of Scientific Instruments , vol.81, no.2, pp.023707,023707-9, Feb 2010. [11] A. Bazaei, Y. K. Yong, S. O. R. Moheimani, and A. Sebastian, 'Tracking of Triangular References Using Signal Transformation for Control of a Novel AFM Scanner Stage,' IEEE Transactions on Control Systems Technology, vol.20, no.2, pp.453,464, March 2012. [12] M. S. Rana, H. R. Pota, and I. R. Petersen, 'High-Speed AFM Image Scanning Using Observer-Based MPC-Notch Control,' IEEE Transactions on Nanotechnology, vol.12, no.2, pp.246,254, March 2013. [13] Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, ' High-speed cycloid-scan atomic force microscopy,' Nanotechnology, vol. 21, p. 365503, 2010. [14] I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, 'A New Scanning Method for Fast Atomic Force Microscopy,' IEEE Transactions on Nanotechnology, vol.10, no.2, pp.203,216, March 2011. [15] T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi ' High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,' Nanotechnology, vol. 23, p. 185501, 2012. [16] S. B. Andersson and D. Y. Abramovitch, 'A Survey of Non-Raster Scan Methods with Application to Atomic Force Microscopy,' American Control Conference, pp.3516-3521, 2007. [17] B. Song, N. Xi, R. Yang, K. Wai, C. Lai, and C. Qu, 'On-line sensing and visual feedback for atomic force microscopy (AFM) based nano-manipulations,' 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC), vol., no., pp.71,74, 12-15 Oct. 2010. [18] P. I. Chang, H. Peng, J. Maeng, and S. B. Andersson, 'Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy,' Review of Scientific Instruments , vol.82, no.6, pp.063703,063703-7, Jun 2011. [19] G. Li, Y. Wang, and L. Liu, 'Drift Compensation in AFM-Based Nanomanipulation by Strategic Local Scan,' IEEE Transactions on Automation Science and Engineering, vol.9, no.4, pp.755,762, Oct. 2012. [20] Hui Xie and S. Régnier, 'High-Efficiency Automated Nanomanipulation With Parallel Imaging/Manipulation Force Microscopy,' IEEE Transactions on Nanotechnology, vol.11, no.1, pp.21,33, Jan. 2012. [21] J. Curie and P. Curie, 'Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées,' Comptes rendus, vol. 91, pp. 294-295, 1880. [22] P. J. Chen and S. T. Montgomery, 'A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,' Ferroelectrics, vol. 23, pp. 199-207, 1980/01/01 1980. [23] Y.-K. Wen, 'Method for Random Vibration of Hysteretic Systems,' Journal of the Engineering Mechanics Division, vol. 102, pp. 249-263, 1976. [24] M. J. Todd and K. L. Johnson, 'A model for coulomb torque hysteresis in ball bearings,' International Journal of Mechanical Sciences, vol. 29, pp. 339-354, 1987. [25] B. D. Coleman and M. L. Hodgdon, 'A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials,' International Journal of Engineering Science, vol. 24, pp. 897-919, 1986. [26] F. Preisach, 'Über die magnetische Nachwirkung,' Zeitschrift für Physik A Hadrons and Nuclei, vol. 94, pp. 277-302, 1935. [27] M. Goldfarb and N. Celanovic, 'Modeling piezoelectric stack actuators for control of micromanipulation,' IEEE Control Systems, vol. 17, pp. 69-79, 1997. [28] K.-C. Huang, J.-W. Wu, J.-J. Chen, C.-L. Chen, M.-Y. Chen, and L.-C. Fu, 'Development of a large scanning-range atomic force microscope with adaptive complementary sliding mode controller,' 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp.1685-1690, 2012. [29] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, 'Tapping mode atomic force microscopy in liquids,' Applied Physics Letters, vol. 64, pp. 1738-1740, 1994. [30] T. R. Rodriguez and R. Garcia, 'Theory of Q control in atomic force microscopy,' Applied Physics Letters, vol. 82, pp. 4821-4823, 2003. [31] B. Francis and W. Wonham, 'The internal model principle of control theory,' Automatica, vol. 12, pp. 457-465, 1976. [32] Y.-S. Lu, 'Sliding-Mode Disturbance Observer with Switching-Gain Adaptation and Its Application to Optical Disk Drives,' IEEE Transactions on Industrial Electronics, vol.56, no.9, pp.3743-3750, Sept. 2009. [33] S. Galeani, L. Menini, and A. Potini, 'Robust Trajectory Tracking for a Class of Hybrid Systems: An Internal Model Principle Approach,' IEEE Transactions on Automatic Control, vol.57, no.2, pp.344,359, Feb. 2012. [34] R. Doraiswami and L. Cheded, 'Kalman filter for parametric fault detection: an internal model principle-based approach,' IET Control Theory & Applications, vol.6, no.5, pp.715-725, March 15 2012. [35] S. Polit, and J. Dong, 'Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing,' IEEE/ASME Transactions on Mechatronics, vol.16, no.4, pp.724,733, Aug. 2011. [36] P. R. Dahl, and R. Wilder, “Math model of hysteresis in piezoelectric actuators for precision pointing system,” in Proceedings of the Eighth Annual Rocky Mountain Conference. Keystone, CO, UNITED STATES: Guidance and control 1985, Feb 1985, pp. 61–88. [37] B. Cappella and G. Dietler, 'Force-distance curves by atomic force microscopy,' Surface Science Reports, vol. 34, pp. 1-104, 1999. [38] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, 'Effect of contact deformations on the adhesion of particles,' Journal of Colloid and Interface Science, vol. 53, pp. 314-326, 1975. [39] B. V. Derjaguin, 'Untersuchungen über die Reibung und Adhäsion, IV.' Colloid & Polymer Science, Vol. 69 (2. 1934), p. 155-164, 1934. [40] H. S. M. Coxeter, Introduction to Geometry: Wiley, 1989. [41] J. N. Israelachvili, Intermolecular and surface forces / Jacob N. Israelachvili. London ; San Diego :: Academic Press, 1991. [42] S. Ciraci, E. Tekman, A. Baratoff, and I. P. Batra, 'Theoretical study of short- and long-range forces and atom transfer in scanning force microscopy,' Physical Review B, vol. 46, pp. 10411-10422, 1992. [43] 范光照 and 張郭益, '精密量測, 5th ed.,' 高立, 2007. [44] C. D. Frank, 'High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,' Measurement Science and Technology, vol. 9, p. 1024, 1998. [45] L.-S. Chen, 'Servo System Design and Analysis for Fabricating Large Area Sub-Micron-Period Interference Gratings,' MS, NTU, 2008. [46] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The traveling salesman problem: a computational study, Princeton University Press, 2011. [47] M. Held, and R. M. Karp, 'The traveling-salesman problem and minimum spanning trees: Part II,' Mathematical programming, vol. 1, pp. 6-25, 1971. [48] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II, 'An analysis of several heuristics for the traveling salesman problem, ' SIAM journal on computing, vol.6, pp. 563-581, 1977. [49] H. Kuan-Lin, P. Yuan-Zhi, W. Jim-Wei, C. Mei-Yung, and F. Li-Chen, 'Design and implementation of an electromagnetically damped positioner with flexure suspension,' 2011 IEEE International Conference on Control Applications (CCA), , 2011, pp. 1062-1067. [50] J.-P. Su and C.-C. Wang, 'Complementary sliding control of non-linear systems,' International Journal of Control, vol. 75, pp. 360-368, 2002/01/01 2002. [51] S.-J. Huang, K.-S. Huang, and K.-C. Chiou, 'Development and application of a novel radial basis function sliding mode controller,' Mechatronics, vol. 13, pp. 313-329, 2003. [52] M. Chen and W.-H. Chen, 'Sliding mode control for a class of uncertain nonlinear system based on disturbance observer,' International Journal of Adaptive Control and Signal Processing, vol. 24, pp. 51-64, 2010. [53] P. A. Ioannou and J. Sun, Robust adaptive control: PTR Prentice-Hall, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61408 | - |
dc.description.abstract | 原子力顯微鏡是一種非常實用的量測儀器,可建立導體與非導體樣本的三維表面輪廓在奈米等級的解析度。然而,因為傳統原子力顯微鏡所使用的掃描方式,容易引發掃描器的機械共振,且存在一些不必要區域的掃瞄,因而造成原子力顯微鏡在掃描速率上的限制。在本論文中,吾人將以自行設計之原子力顯微鏡系統從三個不同的層面來解決上述之問題。
首先,我們將原子力顯微鏡在水平方向的掃描從傳統的柵狀式軌跡改為正弦式軌跡,如此可在不會引發水平掃描器震動的情況下提高掃描速率。其次,根據此熟知的掃描軌跡,基於內部模形原理所設計之類神經網路互補順滑模式控制器與適應性互補順滑模式控制器,可用來達到高精度的掃瞄並處理系統參數的不確定性和外在環境干擾等問題。最後,透過光學顯微鏡的輔助與掃描過程中所得到的資訊,可進一步做掃描路徑的規劃來集中掃描區域在有樣本的地方,進而縮減整體所需的掃描時間。從實際的實驗結果可以顯示出此提出的方法之效果。 | zh_TW |
dc.description.abstract | Atomic force microscopy (AFM) is a powerful measurement instrument which can build three-dimensional topography image of conductive and nonconductive samples at nano-scale resolution. However, due to the scan method of conventional AFM, the induced mechanical resonance of the scanner and the scan in area of uninterested would strictly limit the scan speed. In this thesis, we improve these problems with our designed AFM system from three aspects.
First, the sinusoidal trajectory is applied to lateral scanning of the AFM rather than the traditional raster trajectory, so the scan rate can be increased without inducing vibration of the lateral scanner. Second, with this well-known trajectory, the internal model principle based neural network complementary sliding mode controller and adaptive complementary sliding mode controller are designed to achieve high precision scanning and to cope with the system parameter uncertainties and external disturbance. Finally, with the aid of an auxiliary optical microscopy and the scanned information during the scanning process, scan path planning can be adopted to focus the scanning on samples such that the total scan time is shortened. Experimental results are provided to show the performance of the proposed method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:26Z (GMT). No. of bitstreams: 1 ntu-102-R00921010-1.pdf: 10123454 bytes, checksum: 430e785a36c5015984b482d044a9a930 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of content iv Table of Acronyms vi List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.2.1 High speed AFM 3 1.2.2 Local scan AFM 9 1.3 Contribution 12 1.4 Thesis Organization 14 Chapter 2 Preliminary 15 2.1 Fundamentals of Piezoelectric Actuation 15 2.1.1 Piezoelectric effect 16 2.1.2 Hysteresis phenomenon 17 2.2 Fundamentals of Electromagnetic Actuation 18 2.2.1 Properties of permanent magnet 19 2.2.2 Lorentz force principle 22 2.3 Operation Principle of AFM System 23 2.3.1 Tip-sample interaction modes 24 2.3.2 AFM scanning schemes 27 2.4 Internal Model Principle (IMP) 29 Chapter 3 System Design and Dynamics Modeling 33 3.1 AFM Scanning System 35 3.2 AFM Measuring System 37 3.2.1 Scanning probe excitation 38 3.2.2 Cantilever dynamics detection 39 3.3 Dynamics Modeling and Formulation 41 3.3.1 Modeling of xy-hybrid scanner 42 3.3.2 AFM scanning disturbance 47 3.3.3 System identification 50 3.4 Laser Interferometer Sensing System 54 3.5 Hardware Equipment 56 Chapter 4 Sinusoidal Local Scan 59 4.1 Conventional Raster Scan Trajectory 60 4.2 Sinusoidal Scan Trajectory 62 4.3 Mapping Sinusoidal Points to Raster Points 64 4.4 Local Scan Method 66 4.4.1 Auxiliary optical microscopy 66 4.4.2 Scan path planning 68 4.5 Variable Sinusoidal Local Scan 73 Chapter 5 Controller Design 77 5.1 Scan Trajectory Assignment for xy-hybrid Scanner 77 5.2 IMP based Neural Network Complementary Sliding Mode Control 79 5.2.1 Problem formulation 80 5.2.2 Control algorithm 82 5.2.3 Stability analysis 86 5.3 IMP based Adaptive Complementary Sliding Mode Control 89 5.3.1 Problem formulation 90 5.3.2 Control algorithm 92 5.3.3 Stability analysis 94 Chapter 6 Experiments 101 6.1 Experimental Setup 101 6.2 Hysteresis Compensation 103 6.3 Scan Trajectories Tracking in Fast Axis 104 6.3.1 Triangular waveform with PI control 105 6.3.2 Sinusoidal waveform with PI control 106 6.3.3 Sinusoidal waveform with IMP based NNCSMC 108 6.4 Scan Trajectories Tracking in Slow Axis 109 6.4.1 Consecutive steps with PI control 109 6.4.2 Slow ramp with PI control 110 6.4.3 Slow ramp with IMP based ACSMC 112 6.5 AFM Scanning Application 113 6.5.1 Standard grating with raster scan 113 6.5.2 Standard grating with sinusoidal scan 115 6.5.3 Human red blood cells with sinusoidal local scan 117 6.5.4 Fish blood cells with variable sinusoidal local scan 119 Chapter 7 Conclusions 121 Reference 123 | |
dc.language.iso | en | |
dc.title | 光學顯微鏡輔助之大範圍原子力顯微鏡精密正弦式局部掃描 | zh_TW |
dc.title | Precision Sinusoidal Local Scan for Large Range Atomic Force Microscopy with Auxiliary Optical Microscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 范光照(Kuang-Chao Fan),洪紹剛(Shao-Kang Hung),顏家鈺(Jia-Yush Yen),陳美勇(Mei-Yung Chen) | |
dc.subject.keyword | 原子力顯微鏡,正弦式掃描,內部模型原理,類神經網路,互補順滑模式控制,適應性控制, | zh_TW |
dc.subject.keyword | Atomic force microscopy,sinusoidal scanning,internal model principle,neural network,complementary sliding mode control,adaptive control, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 9.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。