Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳先琪(Shian-chee Wu)
dc.contributor.authorYa-Ting Keen
dc.contributor.author柯雅婷zh_TW
dc.date.accessioned2021-06-16T13:02:20Z-
dc.date.available2015-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citationAllison, E. M., and A. E. Walsby. 1981. The role of potassium in the control of turgor pressure in a gas-vacuolated blue-green algae. J. Exp. Bot. 32: 241-249.
Apricio M. E., R. E. Uittenbogaard, L. M. Dionosio Pires, B. J. H. van de Wiel, H. J. H. Clercx. 2013. Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol. model. 248: 42-56.
Belov, A. P., and J. D. Giles. 1997. Dynamical model of buoyant cyanobacteria. Hydrobiologi. 349: 87-97.
Brookes, J. D., G. G. Ganf, , D. Green and J. Whittington. 1999. The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. J. Plankton Res. 21: 327-341.
Chien, Y. C., S. C. Wu, W. C. Chen, and C. C. Chou. 2013. Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environ. Eng. Sci. 30: 4.
Csanady, G.T. 1973. Turbulent Diffusion in the Environment. Dordrecht: Riedel.
Chu, Z., X. Jin, B. Yang, and Q. Zeng. 2007. Buoyancy regulation of Microcystis flos-aquae during phosphate-limited and nitrogen-limited growth. J. Plankton Res. 29: 739-745.
Dinsdale, M. T., and A. E. Walsby 1972. The interrelation of cell tugor pressure, gas-vacuolation, and buoyancy in a blue-green algae. J. Exp. Bot. 23: 561-570.
Falconer, I. R.. 1999. An Overview of Problems Caused by Toxic Blue–Green Algae (Cyanobacteria) in Drinking and Recreational Water. Environ. Toxiccol. 14: 5-12.
Fee, E. J., J. A. Shearer, E. R. DeBruyn, and E. U. Schindler. 1992. Effects of lake size on phytoplankton photosynthesis. Can. J. Fish. Aquat. Sci. 49: 2445-2459.
Ganf, G. G. and R. L. Oliver. 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 70: 829-844.
Harris, G. P. and B. B. Piccinin. 1977. Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80: 405-456.
Harris, G. P. 1986. Phytoplankton Ecology. Chapman & Hall, London, UK.
Hawkins, P. R., J. Holliday, A. Kathuria, and L. Bowling, 2005.Change in cyanobacterial biovolume due to preservation by Lugol’s iodine. Harmful Algae 4, 1033.
Heinz, G., J. Ilmberger, and M. Schimmele. 1990. Vertical mixing in Ueberlinger See, western part of Lake Constance. Aquat. Sci. 52: 256-268.
Howard, A. 1993. SCUM-simulation of cyanobacterial underwater movement. Bioinformatics 9(4), 413-419.
Howard, A. 1994. Problem cyanobacterial blooms: explanation and simulation modelling, Transactions of the Institute of British Geographers, New Series, Vol. 19, No. 2, pp. 213-224.
Howard , A., M. J. Kirkkby, P. E. Kneale, and A. T. Mcdonald. 1995. Modelling the growth of cyanobacteria (GrowSCUM). Hydrol. Processes 9: 809-820.
Howard, A., A. E. Irish, and C. S. Reynolds. 1996. A new simulation of cyanobacteria underwater movement (SCUM’96). J. Plankton Res. 18: 1375-1385.
Howard, A. 2001. Modeling movement patterns of the cyanobacterium, Microcystis. Ecol. Appl. 11(1), 304-310.
Humphries, S. E. and V. D. Lyne. 1988. Cyanophyte blooms: The role of cell buoyancy. Limnol. Oceanogr. 33: 79-81.
Hunter, J. R., P. D. Craig, and H. E. Philips. 1993. On the use of random walk models with spatially variable diffusivity. J. comput. Phys. 106:366.
Hutchinson, G. E., 1967. A Treatise on Limnology. Vol. 2. Introduction to Lake Biology and the Limnoplankton. Wiley, New York, 1115 pp.
Jang, M. H., K. Ha, G. J. Joo, and N. Takamura. 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol. 48: 1540-1550.
Jarvis, A., R. C. Hart, and S. Combrink. 1987. Zooplankton feeding on size fractionated Microcystis colonies and Chlorella in a hypertrophic lake (Hartbeespoort Dam, Sounth Africa):implications to resource utilization and zooplankton succession. J. Plankton Res. 9: 1231-1249.
Jassby, A., and T. Powell. 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, Califonia. Limnol. Oceanogr. 20: 530-543.
Johnk, K., J. Huisman, J. Sharples, B. Sommeijer, P. Visser, and J. M. Stroom. 2008.Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495.
Kirk, J. T. O. 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Sphericalcells, New Phytologist, 75:21-36.
Knoechel, R. and J. Kalff. 1978. An in situ study of the productivity and population dynamics of five freshwater planktonic diatom species. Limnol. Oceanogr. 23: 195-218.
Krivtsov, V., E. G. Bellinger and D. C. Sigee. 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion, Aquat. Ecol. 39: 123-134.
Kromkamp, J., A. Konopka, L. R. Mur. 1986. Buoyancy regulation in a strain of Aphan (cyanophyceae): The importance of carbohydrate accumulation and gas vesicle collapse. J. Gen. Microbiol. 132: 2113-2121.
Kromkamp, J., A. Konopka, L. R. Mur. 1988. Bouyancy regulation in light-limited continuous cultures of Microcystis aeruginosa. J. Plankton Res. 10: 171-183.
Kromkamp, J. and A. E. Walsby. 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12: 161-183.
Okada, M. and S. Aliba. 1983. Simulation of water-bloom in a eutrophic lake-III. Modeling the vertical migration and growth of Microcystis aeruginosa. Water Res.17(8): 883-1983.
Okada, M. and S. Aliba. 1986. Simulation of water-bloom in a eutrophic lake-IV. Modeling the vertical migration in a population of Microcystis aeruginosa. Water Res. 20(4): 485-490.
Oliver, R. L. and A. E. Walsby. 1984. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol. Oceanogr. 26: 285-294.
Pahl-Wostl, C., and D. M. Imboden. 1990. DYPHORA-a dynamic model for the rate of photosynthesis of algae. J. Plankton Res. 12: 1207-1221.
Rabouille, S, J. M. Thebaulta, and M .J . Salencon. 2003. Simulation of carbon reserve dynamics in Microcystis and its influence on vertical migration with Yoyo model. Biol. Model. 326(4): 349-361.
Rabouille, S., M. J. Salencon, and J. M. Thebault. 2005. Functional analysis of Microcystis vertical migration: a dynamic model as a prospecting tool I –Processes analysis. Ecol. Model. 188: 386-403.
Reynolds, C. S. and A. E. Walsby. 1975. Waterblooms. Biology Review 50: 437-481.
Reynolds, C. S., G. H. M. Jao rski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green alga, Microcystis aeruginosa Kutz. emend. Elenkin. Philosophical Transactions of the Royal Society B 293: 419–477.
Reynolds, C. S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 384 pp.
Reynolds, C. S. 1987. Cyanobacteria water bloom. Advances in botanical research. 13: 67-143.
Reynolds, C. S. 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologi. 578: 37-45.
Ross, O.N. 2004. Algal motility in variable turbulence. Doctor’s dissertation, University of Southampton.
Ruttner , F. 1963. Fundamentals of limnology, 3rd ed. Univ. Toronto.
Schindler D.W. and Others. 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 41: 1004-1017.
Serizawa H, T. Amemiya, T. Enomoto, A. G. Rossberg, and K. Itoh. 2008. Mathematical modeling of colony formation in algae bloom: phenotypic plasticity in cyanobacteria. Ecol. Res. 23: 841-850.
Serizawa H, T. Amemiya, A. G. Rossberg, and K. Itoh. 2008. Computer simulations of seasonal outbreak and diurnal vertical migration of cyanobacteria. Limnolog. 9:185-194.
Shen H. and Song L. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592: 475-486.
Stauffer, R. E. 1992. Efficient estimation of temperature distribution, heat storage, thermoline migration and vertical eddy conductivities in stratified lakes. Freshwater Biol. 27: 307-326.
Theiss, W. C., W. W. Carmichael, J. Wyman, and R. Bruner. 1988. Blood pressure and hepatocellular effects of the cyclic heptapeptide toxin produced by the freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa strain PCC-7820. Toxicon 26: 603-613.
Thomas, R. H. and A. E.Walsby. 1985. Buoyancy regulation in a strain of Microcysis., J.Gen. Microbiol. 131: 799-809.
Vasconcelos, V. M. 1999. Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz. J. Med. Biol. Res. 32: 249-254.
Visser, A.W. 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol Prog. Ser. 158: 275.
Visser, P. M., J. Passarge, and L. R. Mur. 1997. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia. 349: 99-109.
Wallace B. B. and D. P. Hamilton. 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aerginosa. Limnol. Oceanogr. 44: 273-281.
Walsby, A. E. and C. S. Reynolds, 1980. Sinking and Floating. In Morris I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford, 371–412.
Walsby, A. E. and McAllister, G. K. 1987. Buoyancy regulation by Microcystis in Lake Okara. N. Z. J. Mar. Freshwater Res. 21: 521-524.
Walsby. 1994. Gas vesicles. Microbiol. Rev. 58: 94-144.
Wang, X. D., B. Q. Qin, G. Gao, and H. W. Paerl. 2010. Nutrient enrichment and selective predation by zooplankton promote Microcystis (cyanobacteria) bloom formation. J. Plankton. Res. 32: 457-470.
Wang, Y. W., J. Zhao, J. H. Li, S. S. Li, L. H. Zhang, M. Wu. 2011. Effects of calcium levels on colonial aggregation and buoyancy of Miccrocystis aeruginosa. Curr Microbiol. 62: 679-683.
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Academic Press, 3rd edition. California, 80-81.
Wiedner, C., P. M. Visser, J. Fastner, J. S. Metcalf, G. A. Codd, and L.R. Mur. 2003. Effects of light on the microcystin content of Microcystis strain PCC7806. Appl. Environ. Microb. 69: 1475-1481.
Wu, Z.X. and L.R. Song. 2008. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia. 47: 98- 104.
Wu, X. D. and F. X. Kong. 2009. Effect of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different size during a summer bloom. Internat. Rev. Hydrobiol. 94: 258-266.
Wu, X. D., F. X. Kong, M. Zhang. 2011. Photoinhition of colonial and unicellular Microcystis cells in a summer bloom in lake Taihu. Limnol. 12: 55-61.
Yang, Z., F. X. Kong, X. L. Shi, and H. S. Cao. 2006. Morphological response of Microcystis aeruginosato grazing by different sorts of zooplankton. Hydrobiologia. 563: 225-230.
Yang, Z., F. X. Kong, Z. Yang, M. Zhang, Y. Yu, and S. Q. Qian. 2009. Benefits and costs of the grazer-induced colony formation in Microcystis aeruginosa. Int. J. Limnol. 45: 203-208.
Yang, H., Y. Cai, M. Xia, W. Wang, L. Shi, P. Li, and F. Kong. 2011. Role of cell hydrophobicity on colony formation in Microcystis (cyanobacteria). Int. Rev. Hydrobiol. 96: 141-148.
Yang, Z. and F.X. Kong. 2012. Formation of large colonies: a defense mechanism of Microcystis aeruginosaunder continuous grazing pressure by flagellate Ochromonassp., Journal of Limnology. Vol.71.
Yamamoto, T., and G. Hatta. 2004. Pulsed nutrient supply as a factor inducing phytoplankton diversity. Ecol. Model. 17, 247.
Zhang, M., X. Shi, Y. Yu, and F. X. Kong. 2011. The Acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. J. Phycol. 47: 524-532.
行政院環保署全國環境水質監測資訊網,2010 , http://www.epa.gov.tw/。
陳琬菁(2009)。微囊藻在日夜週期內移動能力對垂直分佈動態及生長之影響,碩士論文,國立台灣大學環境工程學研究所。
簡鈺晴,2005。翡翠水庫藻類多樣性之分析及消長動態之模擬。國立台灣大學碩士論文。
吳先琪,吳俊宗,張美玲 (2012),100年新山水庫藻類優養指標與水庫水質相關性之研究計畫,國立台灣大學執行,自來水股份有限公司委託。
簡鈺晴,2013。亞熱帶離槽水庫微囊藻取得優勢之機制分析及利用軌跡模式建立動態消長模式之研究。國立台灣大學博士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61403-
dc.description.abstract優養化是造成台灣水庫水質惡化的常見原因之一,並且藍綠藻中的微囊藻屬為其中常見的優勢藻種。本研究之研究場址新山水庫即為一例,其為一亞熱帶離槽水庫,常在六月份到九月份發生微囊藻藻華現象。過去研究顯示,微囊藻於水體中的日夜週期垂直移動行為及形成藻團的特性,可能是其於水體中取得優勢的原因。微囊藻可藉由消耗及累積因光合作用所產生的細胞壓艙物含量來調整藻體於水體中的浮力及密度,進行日夜垂直的移動;而微囊藻形成藻團的特性則可能和其於水體中的垂直移動、營養鹽儲存及抵抗攝食壓力有關。
本研究之目的為修改及校正簡(2013)所發展之微囊藻移動軌跡模式。藉由於新山水庫水體分層時,現地採樣監測得到之光線強度、水體溫度、微囊藻藻濃度垂直分布及粒徑分布變化的結果,來模擬微囊藻日夜週期垂直移動,同時將藻體密度變化的延遲時間加入模式中,並且校正藻體於暗處之密度變化率常數。
新山水庫現地24小時觀測結果顯示微囊藻確實有日夜垂直移動行為。不同時間及深度的微囊藻粒徑分布結果顯示,粒徑大於100 μm的藻團甚少,粒徑介於30到50 μm的藻團雖然佔大多數,但以藻細胞數來說,粒徑介於50到90 μm的藻團佔最多;並且,由不同時間的粒徑分布可觀察到粒徑介於50到90 μm的藻團於1 m移動至7 m,此粒徑範圍的微囊藻移動行為較明顯。模式模擬結果也顯示,粒徑介於50到100 μm的藻團的垂直移動行為較明顯,而粒徑小於50 μm的藻團則是停留在水深2-3 m處,此皆和現地觀測結果相似。模式中加入藻體密度變化之延遲時間的加入確實有助於模擬微囊藻垂直移動現象,並且此軌跡模式的發展將微囊藻日夜週期垂直移動行為大致地模擬及描述出來。
zh_TW
dc.description.abstractAlgal blooming is the major causes of water-quality deterioration in subtropical reservoirs in Taiwan where Microcystis sp. is the most common bloom-forming genus of cyanobacteria, which is also the dominating species in Hsin-Shan Reservoir in the summer in recent years. The capabilities of both the diurnal vertical migration and colony forming are suggested to be the important reasons for the dominance of Microcystis in a wide range of aquatic ecosystems. Forming colonies is helpful to the vertical migration, nutrient storage, and to the defense against predation pressure. Microcystis can regulate their buoyancy and density by changing the amount of cell ballast, which is made possible by accumulating or consuming carbohydrate produced by the photosynthesis.
The purposes of this research was to modify the trajectory model developed previously in this laboratory and to simulate the daily vertical migration of Microcystis with different colony sizes by using the information of light intensity, temperature, algae concentration, and size distribution, collected from Hsin-Shan Reservoir. The influence of the response time on the density change was taken into consideration, and the formula of the density change rate in dark was also investigated.
The on-site 24-hours investigation on August 30–31, 2012 demonstrated that Microcystis was the dominant species in Hsin-Shan Reservoir and indeed migrating vertically. The observation of size distribution indicated that few colonies had size larger than 100 μm. Although most colonies had sizes ranging from 30 to 50 μm, the colonies with sizes between in 50 to 90 μm accounted for the major portion in terms of the cell numbers. Furthermore, the synchronized migration of colonies with sizes in the range of 50 to 90 μm is obvious. They dominated at 1m and then moved to 7m. The results of model simulation show that the main group of colonies migrating vertically has sizes in the range of 60 to 100 μm, which is consistent with the on-site observation. The colonies smaller than 50 μm often stays at depth between 2-3 m. The response time does help the model to simulate the migration of Microcystis more accurately. The modified model is able to describe the diurnal migration phenomenon of Microcystis well.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:20Z (GMT). No. of bitstreams: 1
ntu-102-R00541105-1.pdf: 3346045 bytes, checksum: 80cacaf640bcf172171880b32e9183f5 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables X
1. Introduction 1
1.1. General Background 1
1.2. Research Purpose 6
2. Background and Theories 7
2.1. Microcystis 7
2.2. Temperature Stratification and Mixing in Reservoir 8
2.3. Vertical Migration Behavior of Microcystis 12
2.3.1. Buoyancy and Density Regulating Mechanisms 12
2.3.2. Model Development of Vertical Migration of Microcystis 17
2.4. Colony formation of Microcystis 34
2.4.1. Nutrient and Mucilage 34
2.4.2. Light and Wind 37
2.4.3. Protozoa 39
3. Materials and Methods 42
3.1. Research Plan 42
3.2. Materials and Methods 42
3.2.1. Study site 42
3.2.2. Field investigation of diurnal migration of Microcystis spp. 43
3.2.3. Analyses of water quality and algae 45
3.2.4. Mathematical model 50
4. Results and Discussions 55
4.1. Field investigation 55
4.1.1. Physic-chemical Environment 55
4.1.2. Algal concentration 60
4.1.3. Size distribution of Microcystis colonies 63
4.2. Estimation of mixing coefficients 68
4.3. Model simulation of vertical migration of Microcystis 70
4.3.1. Simulation of a group of colonies with a specific size 70
4.3.2. The density and density change rate of colonies with different sizes 76
4.3.3. The effect of adding response time in model 77
4.3.4. Simulation of a group of colonies with a size distribution 78
5. Conclusions 83
6. Recommendations for Future Research 85
Reference 87
Appendix 93
dc.language.isoen
dc.subject垂直移動zh_TW
dc.subject微囊藻zh_TW
dc.subject藻團zh_TW
dc.subject粒徑分佈zh_TW
dc.subject軌跡模式zh_TW
dc.subjectsize distributionen
dc.subjectMicrocystisen
dc.subjectcolonyen
dc.subjectvertical migrationen
dc.subjecttrajectory modelen
dc.title亞熱帶水庫中不同粒徑微囊藻日夜週期移動模式模擬zh_TW
dc.titleModel Development and Simulation for the Diurnal Vertical Migration of Microcystis Colonies with Different Colony Sizes in a Subtropical Reservoiren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊宗(Jiunn-Tzong Wu),林鎮洋(Jen-Yang Lin),闕蓓德(Pei-Te Chiueh)
dc.subject.keyword微囊藻,藻團,粒徑分佈,軌跡模式,垂直移動,zh_TW
dc.subject.keywordMicrocystis,colony,size distribution,trajectory model,vertical migration,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved