請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61401
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
dc.contributor.author | Wan-Rou Liu | en |
dc.contributor.author | 劉婉柔 | zh_TW |
dc.date.accessioned | 2021-06-16T13:02:18Z | - |
dc.date.available | 2015-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-06 | |
dc.identifier.citation | [1]. K. Chang, Microwave Ring Circuits and Antennas, John Wiley & Sons, Inc., 1996, ch. 8.
[2]. D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2004, ch7. [3]. J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/ Microwave Application. New York: Wiley, 2001, ch3, ch5, and ch8. [4]. T. Hirota, A, Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 3, pp. 270-275 , March 1990. [5]. D. I. Kim and G.-S. Yang, “Design of new hybrid-ring directional coupler using a λ/8 or a λ/6 sections,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 10, pp. 1779-1784, Oct. 1991. [6]. R. K. Settaluri, G. Sundberg, A. Weisshaar, and V. K. Tripathi, “Compact folded line rat-race hybrid couplers,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 61-63, Feb. 2000. [7]. H. Ghali and T. A. Moselhy “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2513-2520, Nov. 2004. [8]. Y.-C. Chiang and C.-Y. Chen “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 476-479, Mar 2001. [9]. Y. J. Sung, C. S. Ahn, and Y.-S. Kim, “Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 7-9, Jan. 2004. [10]. J.-T. Kuo, Y.-C. Chiou, and J.-S. Wu, “Miniaturized rat race coupler with microstrip-to-cpw broadside-coupled structure and stepped-impedance sections,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 169-172, Honolulu, Hawaii, June 2007. [11]. I-H. Lin, M. DeVincentis; C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1142-1149, Apr. 2004. [12]. T. Q. Wang and K. Wu, “Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,” IEEE Trans Microw. Theory Tech., vol. 47, no. 2, pp.198–206, Feb. 1999. [13]. Y.-G. Kim, S.-Y. Song, and K. W. Kim, “A compact wideband ring coupler utilizing a pair of transitions for phase inversion,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 25-27, Jan. 2011. [14]. H. Uchida, N. Yoneda, Y. Konishi, and S. Makino, “Bandpass directional couplers with electromagnetically-coupled resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, California, pp. 1563–1566, Jun. 2006. [15]. W.-H. Wang, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Miniaturized rat-race coupler with bandpass response and good stopband rejection,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, USA, pp. 709–712, Jun. 2009. [16]. C.-F. Chen, T.-Y. Huang, C.-C. Chen, W.-R. Liu, T.-M. Shen, and R.-B. Wu, “A compact filtering rat-race coupler using dual-mode stub-loaded resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, Montreal, Canada, Jun. 2012. [17]. C.-K. Lin and S.-J. Chung, “A compact filtering 180° hybrid,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3030-3036, Dec. 2011. [18]. W.-R. Liu, T.-Y. Huang, C.-F. Chen, T.-M. Shen, and R.-B. Wu, “Design of a 180-degree hybrid with chebyshev filtering response using coupled resonators,” submitted to IEEE MTT-S Int. Microw. Symp. Dig., Seattle, U.S., Jun. 2013. [19]. C. Y. Pon, “Hybrid-ring directional coupler for arbitrary power divisions,” IRE Trans. Microw. Theory Tech., vol. 9, no. 6, pp. 529-535, Nov. 1961. [20]. A. K. Agrawal and G.F. Mikucki, “A printed-circuit hybrid-ring directional coupler for arbitrary power divisions,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 12, pp.1401-1407, Dec. 1986. [21]. M. J. Park and B. Lee, “Design of ring coupler for arbitrary power division with 50 ohm lines,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 185-187, April 2011. [22]. Y.-C. Chiou, J.-S. Wu, and J.-T. Kuo, “Periodic stepped-impedance rat race coupler with arbitrary power division,” in Asia-Pacific Microw. Conf. (APMC), pp. 663-666, Yokohoma, Japen, Dec. 2006. [23]. P.-L. Chi, “Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 170- 172, April 2012. [24]. S.Y. Zheng, J.H. Deng, Y.M. Pan, and W.S. Chan, “Circular sector patch hybrid coupler with an arbitrary coupling coefficient and phase difference,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 1781-1792, 2013. [25]. D. Deslandes and K. Wu, “Millimeter-wave substrate integrated wave-guide filters,” in Can. IEEE Elect. Comput. Eng. Conf., vol. 3, no. 3, pp.1917-1920, May 2003, [26]. K. S. Ang and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180° hybrids,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1990-1995, Aug 2002. [27]. F. Lin, Q.-X. Chu, and S. W. Wong, “Design of dual-band filtering quadrature coupler using λ/2 and λ/4 resonators,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 11, pp. 565- 567, Nov. 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61401 | - |
dc.description.abstract | 本論文建立一個通用的設計方法,整合180度混波器及濾波器成單一元件,並具有任意濾波響應及功率分配。首先,以耦合濾波器原理為基礎,可以很容易地合成此特定混波器所需要之耦合係數及品質因子。
為了驗證這個方法可延伸到更高的階數、響應及功率分配,本文使用微帶線共振器研製三種180度混波器,所需的同相與反相之相位響應可以利用共振器之間的電耦合、磁耦合或混和型耦合實現。實際電路結構中共振器之間及饋入端的耦合量需滿足此設計方法所計算的耦合量,模擬及量測結果顯示其響應與目標的相符,且電路面積相較於傳統的環形耦合器縮小約65% ~ 80%。當選用的共振器縮小時,電路面積可再減少。因此,以此方式所實現之180度混波器不只達到縮小面積的目的,也同時確保頻率的選擇度。 本文將此方法所合成的耦合係數及品質因子,以低溫陶瓷共燒技術之基板合成波導實現,設計概念是將所有共振腔擺放在同一平面,以減少量測時所需要的額外轉接,並根據TE101模態場型的分布實現不同的平面式耦合機制以達到所需的相位響應。本論文研製兩種具二階柴比雪夫響應但不同功率分配之平面型疊層波導180度混波器於Ka頻帶上,並加以量測以驗證此設計概念。 | zh_TW |
dc.description.abstract | This thesis focuses on integrating a 180° hybrid and bandpass filters into a single device, and establishing a general method to achieve an arbitrary filtering response and power division. To begin with, based on the groundwork for the coupled-resonator filter design, it provides an easier way to synthesize the required coupling coefficients, and the external quality factors.
Next, in order to verify that this method is flexible and can be extended for different orders, responses and power division ratios, three examples of 180° hybrids using microstrip resonators are presented. In-phase or out-of-phase response of the 180° hybrid is realized by electric coupling, magnetic coupling, or mixed coupling between adjacent resonators. Its physical dimensions should satisfy the calculated coupling coefficients, and external quality factors. Simulated and measured results agree well with the design specification. In comparison to the conventional rat-race coupler, a size reduction of 65% ~ 80% can be achieved. In addition, the circuit size will be further miniaturized if smaller resonators are adopted. As a result, this method has the advantages of not only reducing the circuit size but also ensuring frequency selectivity. By using the proposed method, SIW filtering 180° hybrids can also be implemented in the LTCC technology. The idea is to arrange all cavities in the same plane, so that no additional transition is required for measurement. According to the field pattern of TE101 mode, two types of planar coupling mechanisms are investigated to fulfill the required phase response of the 180° hybrid. Two Ka-band Chebyshev filtering 180° hybrids with different power division ratios are designed to verify the approach. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:18Z (GMT). No. of bitstreams: 1 ntu-102-R00942003-1.pdf: 3761501 bytes, checksum: 76646f209483d95b27b559c9dcae064e (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 論文口試委員審定書
誌謝…………………………………………………………………............i 中文摘要…………………………………………………………………..iii ABSTRACT………………………………………………………………..v CONTENTS………………………………………………………………vii LIST OF FIGURES………………………………………………………..xi Chapter 1 Introduction…………………………………………………...1 1.1 Research Motivation………………………………………………1 1.2 Literature Survey…………………………………………………..2 1.3 Contributions…………………………………………………........4 1.4 Chapter Outline…………………………………………………....5 Chapter 2 Basic Theories of 180° Hybrids and Filters………………....7 2.1 Design Procedure for Filtering 180° Hybrids………………..........7 2.1.1 Basic Operation of the 180° Hybrid………………...............7 2.1.2 Synthesis the Coupling Matrix……………….......................8 2.2 Basic Theory of Couplings……………….....................................13 2.2.1 Electric Coupling………………..........................................13 2.2.2 Magnetic Coupling……………….......................................15 2.2.3 Mixed Coupling………………............................................16 2.3 External Quality Factor Qe……………….....................................17 Chapter 3 Filtering 180° Hybrids Design Using Microstrip Resonators 3.1 Second-Order Chebyshev Filtering Response and Equal Power Division……………….................................................................19 3.2 Second-Order Butterworth Filtering Response and a 6 dB Power Division Ratio………………........................................................29 3.3 Third-Order Chebyshev Filtering Response and Equal power Division………………..................................................................35 Chapter 4 Filtering 180° Hybrids Design Using SIW Resonators…...47 4.1 Coupling and Feeding Structures...................................................48 4.1.1 Magnetic Coupling Structure................................................48 4.1.2 Out-of-Phase Magnetic Coupling Structure.........................51 4.1.3 Feeding Structure..................................................................51 4.2 Second-Order Chebyshev Filtering Response and Equal Power Division..........................................................................................54 4.3 Second-Order Chebyshev Filtering Response and a 4.7 dB Power Division Ratio................................................................................63 Chapter 5 Conclusions..............................................................................73 REFERENCES..........................................................................................75 | |
dc.language.iso | en | |
dc.title | 利用耦合共振器設計任意濾波響應與功率分配之180度混波器 | zh_TW |
dc.title | Design of 180-Degree Hybrids with Arbitrary Filtering Response and Power Division Using Coupled Resonators | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張志揚(Chi-Yang Chang),郭仁財(Jen-Tsai Kuo),?文化(Wen-Hua Tu),陳錡楓(Chi-Feng Chen) | |
dc.subject.keyword | 180度混波器,帶通濾波器,基板合成波導,低溫共燒陶瓷,電路合成方法, | zh_TW |
dc.subject.keyword | 180° hybrid,bandpass filter,SIW (Substrate Integrated Waveguide),LTCC (Low Temperature Co-fired Ceramic),circuit synthesis method., | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。