請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61397
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方俊民(Jim-Ming Fang) | |
dc.contributor.author | Yi-Wei Lo | en |
dc.contributor.author | 羅翊瑋 | zh_TW |
dc.date.accessioned | 2021-06-16T13:02:14Z | - |
dc.date.available | 2018-08-09 | |
dc.date.copyright | 2013-08-09 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-06 | |
dc.identifier.citation | 1. Cox, N. J. and Subbarao, K. Lancet 1999, 354, 1277–1282. Influenza
2. Nicholson, K. G. Semin. Respir. Infect. 1992, 7, 26–37. Clinical features of influenza 3. Thompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J. and Fukuda, K. JAMA 2003, 289, 179–186. Mortality associated with influenza and respiratory syncytial virus in the United States 4. Call, S. A., Vollenweider, M. A., Hornung, C. A., Simel, D. L. and McKinney, W. P. JAMA 2005, 293, 987–997. Does this patient have influenza? 5. Shibasaki, M. and Kanai, M. Chem. Eur. J. 2008, 1839–1850. Synthetic strategies for oseltamivir phosphate 6. Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P. and Garcia-Sastre, A. Science 2005, 310, 77–80. Characterization of the reconstructed 1918 spanish influenza pandemic virus 7. Taubenberger, J. K., Reid, A. H., Lourens, R. M., Wang, R. X., Jin, G. Z. and Fanning, T. G. Nature 2005, 437, 889–893. Characterization of the 1918 influenza virus polymerase genes 8. Belshe, R. B. N. Engl. J. Med. 2005, 353, 2209–2211. The origins of pandemic influenza – Lessons from the 1918 virus 9. Deadly new flu virus in US and Mexico may go pandemic. http://www.newscientist.com/articale/dn17025-deadly-new-flu-virus-in-us-and-mexico-may-go-pandemic.html. 10. Lowen, A. C., Mubareka, S., Steel, J. and Palese, P. Plos Pathog. 2007, 3, 1470–1476. Influenza virus transmission is dependent on relative humidity and temperature 11. Subbarao, K. and Joseph, T. Nat. Rev. Immunol. 2007, 7, 267–278. Scientific barriers to developing vaccines against avian influenza viruses 12. Pinto, L. H., Holsinger, L. J. and Lamb, R. A. Lamb Cell 1992, 69, 517–528. Influenza-virus M2 protein has ion channel activity 13. Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C. and Wilson, I. A. Science 2006, 312, 404–410. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus 14. Nelson, J., Couceiro, S. S., Paulson, J. C. and Baum, L. G. Virus Res. 1993, 29, 155–165. Influenza-virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium – the role of the host-cell in selection of hemagglutinin receptor specificity 15. Suzuki, Y., Ito, T., Suzuki, T., Holland, R. E., Chambers, T. M., Kiso, M., Ishida, H. and Kawaoka, Y. J. Virol. 2000, 74, 11825–11831. Sialic acid species as a determinant of the host range of influenza A viruses 16. Couceiro, J. N., Paulson, J. C. and Baum, L. G. Virus Res. 1993, 29, 155–165. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity 17. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. and Klenk, H. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4620–4624. Human and avian influenza viruses target different cell types in cultures of human airway epithelium 18. Gambaryan, A. S., Robertson, J. S. and Matrosovich, M. N. Virology 1999, 258, 232–239. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses 19. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A. and Wiley, D. C. Nature 1983, 304, 76–78. Single amino-acid substitutions in influenza hemagglutinin change receptor-binding specificity 20. Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J. and Wiley, D. C. Nature 1988, 333, 426–431. Structure of the influenza-virus hemagglutinin complexed with its receptor, sialic-acid 21. Varghese, J. N., Laver, W. G. and Colman, P. M. Nature 1983, 303, 35–40. Structure of the influenza-virus glycoprotein antigen neuraminidase at 2.9-a-resolution 22. Moscona, A. New Engl. J. Med. 2005, 353, 1363–1373. Drug therapy - neuraminidase inhibitors for influenza 23. Colman, P. M. Protein Sci. 1994, 3, 1687–1696. Influenza-virus neuraminidase-structure, antibodies, and inhibitors 24. Colman, P. M., Varghese, J. N. and Laver, W. G. Nature 1983, 303, 41–44. Structure of the catalytic and antigenic sites in influenza-virus neuraminidase 25. De Clercq, E. Nat. Rev. Drug. Discov. 2006, 5, 1015–1025. Antiviral agents active against influenza A viruses 26. Betakova, T. Current Pharm. Design 2007, 13, 3231–3235. M2 protein – a proton channel of influenza A virus 27. von Itzstein, M. Nat. Rev. Drug. Discov. 2007, 6, 967–974. The war against influenza: discovery and development of sialidase inhibitors 28. Whittaker, G. R. Expert. Rev. Mol. Med. 2001, 2001, 1–13. Intracellular trafficking of influenza virus: clinical implications for molecular medicine 29. Davies, W. L., Hoffmann, C. E., Paulshock, M., Wood, T. R., Haff, R. F., Grunert, R. R., Watts, J. C., Hermann, E. C., Neumayer, E. M. and Mcgahen, J. W. Science 1964, 144, 862–867. Antiviral activity of 1-adamantanamine ( Amantadine ) 30. Hayden, F. G. N. Engl. J. Med. 2006, 354, 785–788. Antiviral resistance in influenza viruses – implications for management and pandemic response 31. Bright, R. A., Medina, M. J., Xu, X. Y., Perez-Oronoz, G., Wallis, T. R., Davis, X. H. M., Povinelli, L., Cox, N. J. and Klimov, A. I. Lancet 2005, 366, 1175–1181. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern 32. Bright, R. A., Shay, D. K., Shu, B., Cox, N. J. and Klimov, A. I. JAMA 2006, 295, 891–894. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States 33. Rich, J. R. G., D.; von Itzatein, M. Comprehenesive Glycoscience. Kamerling, J. P.: 2007; pp 885–922. Deign and synthesis of sialidase inhibitors for influenza virus infections 34. von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., Oliver, S. W. and et al. Nature 1993, 363, 418–423. Rational design of potent sialidase-based inhibitors of influenza virus replication 35. Kim, C. U., Lew, W., Williams, M. A., Liu, H. T., Zhang, L. J., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G. and Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681–690. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity 36. McClellan, K. and Perry, C. M. Drugs 2001, 61, 263–283. Oseltamivir – A review of its use in influenza 37. Meindl, P., Bodo, G., Palese, P., Schulman, J. and Tuppy, H. Virology 1974, 58, 457–463. Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid 38. Holzer, C. T., von Itzstein, M., Jin, B., Pegg, M. S., Stewart, W. P. and Wu, W. Y. Glycoconj. J. 1993, 10, 40–44. Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position 39. Woods, J. M., Bethell, R. C., Coates, J. A., Healy, N., Hiscox, S. A., Pearson, B. A., Ryan, D. M., Ticehurst, J., Tilling, J., Walcott, S. M. and et al. Antimicrob. Agents Chemother. 1993, 37, 1473–1479. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro 40. Liu, Z. Y., Wang, B., Zhao, L. X., Li, Y. H., Shao, H. Y., Yi, H., You, X. F. and Li, Z. R. Bioorg. Med. Chem. Lett. 2007, 17, 4851–4854. Synthesis and anti-influenza activities of carboxyl alkoxyalkyl esters of 4-guanidino-Neu5Ac2en (zanatnivir) 41. Macdonald, S. J., Watson, K. G., Cameron, R., Chalmers, D. K., Demaine, D. A., Fenton, R. J., Gower, D., Hamblin, J. N., Hamilton, S., Hart, G. J., Inglis, G. G. A., Jin, B., Jones, H. T., McConnell, D. B., Mason, A. M., Nguyen, V., Owens, I. J., Parry, N., Reece, P. A., Shanahan, S. E., Smith, D., Wu, W. Y. and Tucker, S. P. Antimicrob. Agents Chemthor. 2004, 48, 4542–4549. Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen 42. Macdonald, S. J. F., Cameron, R., Demaine, D. A., Fenton, R. J., Foster, G., Gower, D., Hamblin, J. N., Hamilton, S., Hart, G. J., Hill, A. P., Inglis, G. G. A., Jin, B., Jones, H. T., McConnell, D. B., McKimm-Breschkin, J., Mills, G., Nguyen, V., Owens, I. J., Parry, N., Shanahan, S. E., Smith, D., Watson, K. G., Wu, W. Y. and Tucker, S. P. J. Med. Chem. 2005, 48, 2964–2971. Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza 43. Kubo, S., Tomozawa, T., Kakuta, M., Tokumitsu, A. and Yamashita, M. Antimicrob. Agents Chemother. 2010, 54, 1256–1264. Laninamivir prodrug CS-8958, a long-acting neuraminidase inhibitor, shows superior anti-influenza virus activity after a single administration 44. Ishizuka, H., Yoshiba, S., Okabe, H. and Yoshihara, K. J. Clin. Pharmacol. 2010, 50, 1319–1329. Clinical pharmacokinetics of laninamivir, a novel long-acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS-8958, in healthy male volunteers 45. Li, W. X., Escarpe, P. A., Eisenberg, E. J., Cundy, K. C., Sweet, C., Jakeman, K. J., Merson, J., Lew, W., Williams, M., Zhang, L. J., Kim, C. U., Bischofberger, N., Chen, M. S. and Mendel, D. B. Antimicrob. Agents Chemother. 1998, 42, 647–653. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071 46. Sidwell, R. W., Huffman, J. H., Barnard, D. L., Bailey, K. W., Wong, M. H., Morrison, A., Syndergaard, T. and Kim, C. U. Antivir Res. 1998, 37, 107–120. Inhibition of influenza virus infections in mice by GS4104, an orally effective influenza virus neuraminidase inhibitor 47. Sweeny, D. J., Lynch, G., Bidgood, A. M., Lew, W., Wang, K. Y. and Cundy, K. C. Drug Metab. Dispos. 2000, 28, 737–741. Metabolism of the influenza neuraminidase inhibitor prodrug oseltamivir in the rat 48. Yamamoto, T., Kumazawa, H., Inami, K., Teshima, T. and Shiba, T. Tetrahedron Lett. 1992, 33, 5791–5794. Syntheses of sialic-acid isomers with inhibitory activity against neuraminidase 49. Babu, Y. S., Chand, P., Bantia, S., Kotian, P., Dehghani, A., El-Kattan, Y., Lin, T. H., Hutchison, T. L., Elliott, A. J., Parker, C. D., Ananth, S. L., Horn, L. L., Laver, G. W. and Montgomery, J. A. J. Med. Chem. 2000, 43, 3482–3486. BCX–1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design 50. Rohloff, J. C., Kent, K. M., Postich, M. J., Becker, M. W., Chapman, H. H., Kelly, D. E., Lew, W., Louie, M. S., McGee, L. R., Prisbe, E. J., Schultze, L. M., Yu, R. H. and Zhang, L. J. J. Org. Chem. 1998, 63, 4545–4550. Practical total synthesis of the anti-influenza drug GS-4104 51. Federspiel, M., Fischer, R., Hennig, M., Mair, H. J., Oberhauser, T., Rimmler, G., Albiez, T., Bruhin, J., Estermann, H., Gandert, C., Gockel, V., Gotzo, S., Hoffmann, U., Huber, G., Janatsch, G., Lauper, S., Rockel-Stabler, O., Trussardi, R. and Zwahlen, A. G. Org. Process Res. Dev. 1999, 3, 266–274. Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug oseltamivir phosphate (Ro 64-0796/002, GS-4104-02): Ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex–1-ene–1-carboxylate 52. Farina, V. and Brown, J. D. Angew. Chem. Int. Ed. 2006, 45, 7330–7334. Tamiflu: the supply problem 53. Magano, J. J. Chem. Rev. 2009, 109, 4398–4438. Synthetic approaches to the neuraminidase inhibitors zanamivir (relenza) and oseltamivir phosphate (tamiflu) for the treatment of influenza 54. Abrecht, S., Harrington, P., Iding, H., Karpf, M., Trussardi, R., Wirz, B. and Zutter, U. Chimia 2004, 58, 621–629. The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu((R))): A challenge for synthesis & process research 55. Yeung, Y. Y., Hong, S. and Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310–6311. A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid 56. Kipassa, N. T., Okamura, H., Kina, K., Hamada, T. and Iwagawa, T. Org. Lett. 2008, 10, 815–816. Efficient short step synthesis of corey's tamiflu intermediate 57. Yamatsugu, K., Kamijo, S., Suto, Y., Kanai, M. and Shibasaki, M. Tetrahedron Lett. 2007, 48, 1403–1406. A concise synthesis of tamiflu: third generation route via the Diels–Alder reaction and the curtius rearrangement 58. Yamatsugu, K., Yin, L., Kamijo, S., Kimura, Y., Kanai, M. and Shibasaki, M. Angew. Chem. Int. Ed. 2009, 48, 1070–1076. A synthesis of tamiflu by using a barium-catalyzed asymmetric Diels–Alder-type reaction 59. Yamatsugu, K., Kanai, M. and Shibasaki, M. Tetrahedron 2009, 65, 6017–6024. An alternative synthesis of Tamiflu (R): a synthetic challenge and the identification of a ruthenium-catalyzed dihydroxylation route 60. Satoh, N., Akiba, T., Yokoshima, S. and Fukuyama, T. Angew. Chem. Int. Ed. 2007, 46, 5734–5736. A practical synthesis of (–)-oseltamivir 61. Satoh, N., Akiba, T., Yokoshima, S. and Fukuyama, T. Tetrahedron 2009, 65, 3239–3245. A practical synthesis of (–)-oseltamivir 62. Osato, H., Jones, I. L., Chen, A. Q. and Chai, C. L. L. Org. Lett. 2010, 12, 60–63. Efficient formal synthesis of oseltamivir phosphate (tamiflu) with inexpensive D-ribose as the starting material 63. Shie, J. J., Fang, J. M., Wang, S. Y., Tsai, K. C., Cheng, Y. S. E., Yang, A. S., Hsiao, S. C., Su, C. Y. and Wong, C. H. J. Am. Chem. Soc. 2007, 129, 11892–11897. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity 64. Shie, J.-J., Fang, J.-M. and Wong, C.-H. Angew. Chem. Int. Ed. 2008, 47, 5788–5791. A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor 65. Matveenko, M., Willis, A. C. and Banwell, M. G. Tetrahedron Lett. 2008, 49, 7018–7020. A chemoenzymatic synthesis of the anti-influenza agent Tamiflu (R) 66. Sullivan, B., Carrera, I., Drouin, M. and Hudlicky, T. Angew. Chem. Int. Ed. 2009, 48, 4229–4231. Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (tamiflu) from ethyl benzoate 67. Trost, B. M. and Zhang, T. Angew. Chem. Int. Ed. 2008, 47, 3759–3761. A concise synthesis of (–)-oseltamivir 68. Brion, F. Tetrahedron Lett. 1982, 23, 5299–5302. On the lewis acid-catalyzed Diels–Alder reaction of furan – regiospecific and stereospecific synthesis of substituted cyclohexenols and cyclohexadienols 69. Karpf, M. and Trussardi, R. J. Org. Chem. 2001, 66, 2044–2051. New, azide-free transformation of epoxides into 1,2-diamino compounds: synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (tamiflu) 70. Ryu, D. H. and Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388–6390. Triflimide activation of a chiral oxazaborolidine leads to a more general catalytic system for enantioselective Diels–Alder addition 71. Knapp, S. and Levorse, A. T. J. Org. Chem. 1988, 53, 4006–4014. Synthesis and reactions of iodo lactams 72. Yeung, Y. Y., Gao, X. R. and Corey, E. J. J. Am. Chem. Soc. 2006, 128, 9644–9645. A general process for the haloamidation of olefins. scope and mechanism 73. Schmidt, O. T., Isopropylidene Derivatives. Methods in Carbohydrate Chemistry, Whistler, R. L. Wolfrom, M. L., Eds. Academic Press: New York, 1963 Vol. 2, p318 74. Nair, V. and Emanuel, D. J. J. Am. Chem. Soc. 1977, 99, 1571–1576. Synthetic design, stereochemistry, and enzymatic-activity of a reversed aminoacyl nucleoside – analog of puromycin 75. Boutagy, J. and Thomas, R. Chem. Rev. 1974, 74, 87–99. Olefin synthesis with organic phosphonate carbanions 76. Fleet, G. W. J. and Shing, T. K. M. J. Chem. Soc. Chem. Comm. 1983, 849–850. An entry to chiral cyclohexenes from carbohydrates – a short, efficient, and enantiospecific synthesis of (–)-shikimic acid from D-mannose 77. Fleet, G. W. J., Gough, M. J. and Smith, P. W. Tetrahedron Lett. 1984, 25, 1853–1856. Enantiospecific synthesis of swainsonine, (1s, 2r, 8r, 8ar)–1,2,8-trihydroxyoctahydroindolizine, from D-mannose 78. Streicher, H., Meisch, D. and Bohner, C. Tetrahedron 2001, 57, 8851–8859. Synthesis of L-xylose derived cyclohexenephosphonates – versatile precursors of sialidase inhibitor libraries 79. Streicher, H. and Bohner, C. Tetrahedron 2002, 58, 7573–7581. Synthesis of functionalized cyclohexenephosphonates and their inhibitory activity towards bacterial sialidases 80. Lattrell, R. and Lohaus, G. Liebigs. Ann. Chem. 1974, 901–920. Studies on total synthesis of cephalosporin derivatives .2. substitution-reactions with trans-2-sulfonyloxy-2-azetidinones – synthesis of cis-3-acylamino-4-alkylthio-2-azetidinones 81. Albert, R., Dax, K., Link, R. W. and Stutz, A. E. Carbohydr. Res. 1983, 118, C5-C6. Carbohydrate triflates – reaction with nitrite, leading directly to epi-hydroxy compounds 82. Bernet, B. and Vasella, A. Helv. Chim. Acta 1979, 62, 1990–2016. Carbocyclic Compounds from monosaccharides .1. transformations in the glucose series 83. Nakane, M., Hutchinson, C. R. and Gollman, H. Tetrahedron Lett. 1980, 21, 1213–1216. Convenient and general-synthesis of 5-vinylhexofuranosides from 6-halo-6-deoxypyranosides 84. Furstner, A., Jumbam, D., Teslic, J. and Weidmann, H. J. Org. Chem. 1991, 56, 2213–2217. The scope and limitations of the use of zinc silver graphite in the synthesis of carbohydrate-derived substituted hex-5-enals and pent-4-enals 85. Hyldtoft, L. and Madsen, R. J. Am. Chem. Soc. 2000, 122, 8444–8452. Carbohydrate carbocyclization by a novel zinc-mediated domino reaction and ring-closing olefin metathesis 86. Boyd, D. R. and Sheldrake, G. N. Nat. Prod. Rep. 1998, 15, 309–324. The dioxygenase-catalysed formation of vicinal cis-diols 87. Endoma, M. A., Bui, V. P., Hansen, J. and Hudlicky, T. Org. Process. Res. Dev. 2002, 6, 525–532. Medium-scale preparation of useful metabolites of aromatic compounds via whole-cell fermentation with recombinant organisms 88. Gibson, D. T., Koch, J. R. and Kallio, R. E. Biochemistry 1968, 7, 2653–2658. Oxidative degradation of aromatic hydrocarbons by microorganisms .I. enzymatic formation of catechol from benzene 89. D. T. Gibson, J. R. Koch, C. L. Schuld and R. E. Kallio Biochemistry 1968, 7, 3795–3759. Oxidative degradation of aromatic hydrocarbons by microorganisms .2. metabolism of halogenated aromatic hydrocarbons 90. Greenber.S and Moffatt, J. G. J. Am. Chem. Soc. 1973, 95, 4016–4025. Reactions of 2-acyloxyisobutyryl halides with nucleosides .1. reactions of model diols and of uridine 91. Akhlaghinia, B. Synthesis-Stuttgart 2005, 1955–1958. A new and convenient method of generating alkyl isocyanates from alcohols, thiols and trimethylsilyl ethers using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/Bu4NOCN 92. Trost, B. M. and Massiot, G. S. J. Am. Chem. Soc. 1977, 99, 4405–4412. New synthetic reactions – chemoselective approach to cleavage alpha to a carbonyl group via beta-keto sulfides -preparation of 1,2-diketones 93. Guthikonda, K. and Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672–13673. A unique and highly efficient method for catalytic olefin aziridination 94. Espino, C. G., Fiori, K. W., Kim, M. and Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378–15379. Expanding the scope of C-H amination through catalyst design 95. Fiori, K. W. and Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562–568. Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights 96. Guthikonda, K., Wehn, P. M., Caliando, B. J. and Du Bois, J. Tetrahedron 2006, 62, 11331–11342. Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N-alkoxysulfonyl aziridines 97. Ishikawa, H., Suzuki, T. and Hayashi, Y. Angew. Chem. Int .Ed. 2009, 48, 1304–1307. High-yielding synthesis of the anti-influenza neuramidase inhibitor (–)-oseltamivir by three 'one-pot' operations 98. Ishikawa, H., Suzuki, T., Orita, H., Uchimaru, T. and Hayashi, Y. Chem. Eur. J. 2010, 16, 12616–12626. High-yielding synthesis of the anti-influenza neuraminidase Inhibitor (–)-oseltamivir by two 'one-pot' sequences 99. Gubareva, L. V., Webster, R. G. and Hayden, F. G. Antimicrob. Agents. Chemother. 2001, 45, 3403–3408. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants 100. de Jong, M. D., Thanh, T. T., Khanh, T. H., Hien, V. M., Smith, G. J. D., Chau, N. V., Cam, B. V., Qui, P. T., Ha, D. Q., Guan, Y., Peiris, J. S. M., Hien, T. T. and Farrar, J. N. Engl. J. Med. 2005, 353, 2667–2672. Brief report – oseltamivir resistance during treatment of influenza A (H5N1) infection 101. Dharan, N. J., Gubareva, L. V., Meyer, J. J., Okomo-Adhiambo, M., McClinton, R. C., Marshall, S. A., George, K. S., Epperson, S., Brammer, L., Klimov, A. I., Bresee, J. S., Fry, A. M. and Grp, O.-R. W. JAMA 2009, 301, 1034–1041. Infections with oseltamivir-resistant influenza A(H1N1) virus in the united states 102. Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J. F., Russell, R. J., Walker, P. A., Skehel, J. J., Martin, S. R., Hay, A. J. and Gamblin, S. J. Nature 2008, 453, 1258–1261. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants 103. Cheng, Y.-C. and Prusoff, W. H. Biochem Pharmacol 1973, 22, 3099–3108. Relationship between inhibition constant (Ki) and concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic-reaction 104. Shie, J. J., Fang, J. M. and Wong, C. H. Angew. Chem. Int. Ed. 2008, 47, 5788–5791. A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor 105. Carbain, B., Collins, P. J., Callum, L., Martin, S. R., Hay, A. J., McCauley, J. and Streicher, H. Chemmedchem 2009, 4, 335–337. Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir 106. Barton, D. H. R., Crich, D. and Motherwell, W. B. Tetrahedron Lett. 1983, 24, 4979–4982. A practical alternative to the hunsdiecker reaction 107. Zhu, S. L., Yu, S. Y., Wang, Y. and Ma, D. W. Angew. Chem. Int. Ed. 2010, 49, 4656–4660. Organocatalytic michael addition of aldehydes to protected 2-amino-1-nitroethenes: The practical syntheses of oseltamivir (tamiflu) and substituted 3-aminopyrrolidines 108. Weng, J., Li, Y. B., Wang, R. B. and Lu, G. Chemcatchem 2012, 4, 1007–1012. Organocatalytic michael reaction of nitroenamine derivatives with aldehydes: short and efficient asymmetric synthesis of (–)-oseltamivir 109. Pappo, R., Allen, D. S., Lemieux, R. U. and Johnson, W. S. J. Org. Chem. 1956, 21, 478–479. Osmium tetroxide-catalyzed periodate oxidation of olefinic bonds 110. Degenhardt, C. R. and Burdsall, D. C. J. Org. Chem. 1986, 51, 3488–3490. Synthesis of ethenylidenebis(phosphonic acid) and its tetraalkyl esters 111. Kleschick, W. A. and Heathcock, C. H. J. Org. Chem. 1978, 43, 1256–1259. Synthesis and chemistry of ethyl 2-diethylphosphonoacrylate 112. Chaleix, V. and Lecouvey, M. Tetrahedron Lett. 2007, 48, 703–706. Synthesis of novel phosphonated tritpodal ligands for actinides chelation therapy 113. Seebach, D. and Golinski, J. Helv. Chim. Acta. 1981, 64, 1413–1423. Synthesis of open-chain 2,3-disubstituted 4-nitroketones by diastereoselective michael-addition of (E)-enamines to (E)-nitroolefins – a topological rule for C,C-bond forming processes between prochiral centers 114. Y Hayashi, Y., Gotoh, H., Hayashi, T. and Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212–4215. Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric michael reaction of aldehydes and nitroalkenes 115. Sahoo, G., Rahaman, H., Madarasz, A., Papai, I., Melarto, M., Valkonen, A. and Pihko, P. M. Angew. Chem. Int. Ed. 2012, 51, 13144–13148. Dihydrooxazine oxides as key intermediates in organocatalytic michael additions of aldehydes to nitroalkenes 116. Patora-Komisarska, K., Benohoud, M., Ishikawa, H., Seebach, D. and Hayashi, Y. Helv. Chim. Acta. 2011, 94, 719–745. Organocatalyzed michael addition of aldehydes to nitro alkenes – generally accepted mechanism revisited and revised 117. Moberg, C. Angew. Chem. Int. Ed. 2013, 52, 2160–2162. Mechanism of diphenylprolinol silyl ether catalyzed michael addition revisited but still controversial | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61397 | - |
dc.description.abstract | 流行性感冒對人類的健康造成極大的威脅,近幾年來曾爆發出H5N1禽流感且2013年也出現H7N9新型流感,而在克流感普遍地被用來抑制流感病毒後,目前也出現了因服用克流感所產生的抗藥性危機。因此,開發出新型的藥物以對抗流感病毒是目前相當重要的課題。
我們實驗室透過將克流感的羧酸置換成磷酸,以提昇對神經胺酸酶活性區域中S1位置上三組精胺酸(Arg118、Arg292、Arg371)的作用力,而活性測試結果也顯示零流感(tamiphosphor)有相當大的潛力開發做為新一代的流感抑制劑。然而在過往我們使用D-木醣與二羥基環己二烯作為起始物的合成途徑,在進行大量化的開發時卻不如預期中容易。 2012年,Lu教授的研究團隊發表了透過兩個一鍋化途徑進行克流感的合成,且總產率高達35%。因此,本論文以一鍋化的合成途徑提昇合成效率來進行零流感的合成,而為了證明文獻中一鍋化合成策略的可行性,我們首先成功地驗證了Lu教授研究團隊所提供之以一鍋化合成克流感的策略,再根據此一鍋化的策略對零流感進行合成上的分析。使用磷試劑103作為Michael acceptor,以利接續進行分子內的Horner–Wadsworth–Emmons合環反應,完成three-component coupling反應,並於環己烯結構中引入磷脂基,成功的合成出化合物104。而在此關鍵步驟中,我們也意外地發現於硝基位置上同時發生了nitro-Michael反應而得到相當多量的副產物119。為了解決此問題,我們透過於反應過程中加入NaOEt,進行retro-Michael反應,讓副產物119成功地轉為化合物104。接著進行硝基還原並對胺基進行保護,完成一鍋化的合成操作,成功的合成出磷酯化合物93,而文獻63已報導使用TMSBr對磷酯基進行水解並完成去Boc保護後,即可完成零流感的合成。 因此,我們認為以一鍋化的合成途徑可以進行零流感的大量合成,亦有機會作為工業上的製程,以協助開發零流感成為新的抗流感藥物。 | zh_TW |
dc.description.abstract | Influenza remains a major health problem. The recent emergence of H7N9 influenza and H5N1 avian flu has caused serious concern of the potential for global influenza pandemics. Tamiflu is the most widely-used drug for treatment of influenza infection; however, the drug resistant has emerged. Thus, development of new influenza inhibitors is urgently needed.
Our team has recently reported that tamiphosphor is a promising drug against both avain and human influenza. Tamiphosphor, designed by replacing the carboxyl group in oseltamivir with a phosphonate group, interacts strongly with the three arginine residues (Arg118, Arg292, and Arg371) in the active site of neuraminidases of H1N1 and H5N1 viruses. D-Xylose and bromoarene cis-1,2-cyclohexadienediol as starting materials to synthesize tamiphosphor. However, some problems were encountered when we tried to synthesize this drug in large scale. In 2012, Lu and coworkers have accomplished an efficient asymmetric total synthesis of oseltamivir by two one-pot reaction sequences in 35% overall yield. Based on this simple and high-yielding synthetic strategy, we first validated the synthetic strategy of Lu’s team, and then undertook the synthesis of tamiphosphor. We used vinyl phosphonate 103 as the Michael acceptor for a three-component coupling reaction, followed by an intramolecular Horner–Wadsworth–Emmons reaction to construct the cyclohexene phosphonate 104. Unexpectedly, we also got an appreciable amount of side product 119. Fortunately, we found that addition of NaOEt rendered a retro-Michael reaction for effective conversion of 119 to the desired product 104 in the one-pot process. After reduction of the nitro group, the amine intermediate was directly protected as an NHBoc group, giving 93. According to literature63, treatment of 93 with trimethylsilyl bromide would afford tamiphosphor by hydrolysis of the phosphonate group with concomitant removal of the Boc group. Thus, this one-pot synthesis of phosphonate 93 might be suitable for synthesis of tamiphosphor in large scale and will be useful for the development of anti-influenza drugs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:14Z (GMT). No. of bitstreams: 1 ntu-102-R00223144-1.pdf: 8386020 bytes, checksum: 6dc5fc0a248c17f706bee03288055c1d (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 謝誌........................................... I
摘要........................................... III Abstract....................................... V 目錄........................................... VII 表目錄......................................... IX 圖目錄......................................... X 流程目錄........................................XII 簡稱用語對照表................................. XIV 第一章 緒論.............................................. 1 第一節 流感簡介.......................................... 1 第二節 流感病毒與人類.................................... 2 第三節 流感病毒的介紹.................................... 4 第四節 病毒表面重要的膜蛋白.............................. 6 1-4-1 血液凝集素(Hemagglutinin, HA)..................... 6 1-4-2 神經胺酸酶(Neuraminidase, NA)..................... 7 1-4-3 M2離子通道(M2 ion-channel)........................ 9 1-4-4 病毒的生命周期.................................... 10 第五節 流感病毒抑制劑.................................... 11 1-5-1 M2離子通道抑制劑.................................. 12 1-5-2 神經胺酸酶抑制劑.................................. 13 1-5-3 瑞樂沙(RelenzaTM)的開發........................... 15 1-5-4 克流感(TamifluTM)的開發........................... 17 1-5-5 Peramivir (RapiactaTM)的開發...................... 20 第六節 克流感合成的相關研究.............................. 21 1-6-1以Diels–Alder反應做為關鍵步驟的全合成策略.......... 24 1-6-2以含量豐富的天然物─醣類對克流感進行合成開發........ 27 1-6-3避免使用疊氮化合物進行克流感合成開發................ 29 1-6-4使用有機催化劑搭配一鍋化操作進行克流感合成開發...... 31 第七節 抗藥性流感病毒的產生............................. 33 第二章 結果與討論........................................ 36 第一節 研究背景─零流感的開發............................ 36 第二節 研究動機─以一鍋化途徑合成克流感.................. 42 第三節 以一鍋化途徑合成零流感............................ 44 2-3-1零流感的逆合成分析.................................. 44 2-3-2 製備硝基乙烯化合物40............................... 45 2-3-3 製備醛基化合物41................................... 46 2-3-4 製備Michael acceptor / HWE試劑..................... 49 2-3-5 以一鍋化途徑合成克流感............................. 50 2-3-6 以一鍋化途徑合成零流感............................. 56 第四節 結論.............................................. 63 第三章 實驗部分.......................................... 66 第一節 一般方法......................................... 66 第二節 化學合成步驟以及結構鑑定......................... 68 第四章 參考文獻.......................................... 83 附錄:化合物之核磁共振光譜.............................. 102 | |
dc.language.iso | zh-TW | |
dc.title | 經由一鍋化途徑合成神經胺酸酶抑制劑「零流感」 | zh_TW |
dc.title | Synthesis of Anti-Influenza Neuraminidase Inhibitor Tamiphosphor by “One-Pot” Sequence | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 簡敦誠,李文山,羅禮強 | |
dc.subject.keyword | 有機催化劑,不對稱合成,零流感,一鍋化合成途徑, | zh_TW |
dc.subject.keyword | organocatalyst,asymmeric synthesis,tamiphosphor,one-pot synthesis, | en |
dc.relation.page | 137 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 8.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。