請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | |
| dc.contributor.author | Lu-Cun Chen | en |
| dc.contributor.author | 陳律村 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:01:50Z | - |
| dc.date.available | 2013-09-01 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-07 | |
| dc.identifier.citation | ASTM D4253-00. (2006). Standard test Methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA.
ASTM D422-63. (2007). Standard test method for particle size analysis of soils. ASTM International, West Conshohocken, PA, USA. ASTM D5321-08. (2008). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International, West Conshohocken, PA, USA. ASTM D7181-11. (2011). Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA. ASTM D4767-11. (2011). Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, USA. ASTM D854-06e1. (2006). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA. Been, K., Jefferies, M. G. and Hachey, J. (1991). The critical state of sands. Geotechnique, 41(3), 365-381. Been, K. and Jefferies, M. G. (1985). A state parameter for sands. 35(2). Bishop, A. W. and Eldin, G. (1950). Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength. Geotechnique, 2(1), 13-32. Bishop, A. W. and Green, G. E. . (1965). The influence of end restraint on the compression strength of a cohesionless soil. Geotechnique, 15(3), 243-266. Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65-78. Casagrande, A. (1936). Characteristics of cohesionless soils affecting the stability of earth fills. Boston Society of Civil Engineers, 257-276. Duncan, J. M. and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629-1653. Finno, R. and Rechenmacher, A. (2003). Effects of consolidation history on critical state of sand. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 350-360. doi: doi:10.1061/(ASCE)1090-0241(2003)129:4(350) Hansen, B. (1958). Line ruptures regarded as narrow rupture zones, basic equation based on kinematic conditions. Proceedings of Conference of earth pressure Problems, Brussels, Belgium 39–51 Head, K. H. (1985). Manual of Soil Laboratory Testing: Volume 3: Effective Stress Tests (Vol. 3): Pentech Press. Holtz, R. D. and Kovacs, W. D. (1981). An introduction to geotechnical engineering: Prentice Hall Press. Hosseini, S. M., Haeri, S. M. and Toll, D. G. (2005). Behavior of gravely sand using critical state concepts. Scientia Iranica, 12(2), 167-177. Jefferies, M. and Been, K. (2006). Soil Liquefaction : A Critical State Approach. New York: Taylor & Francis. Lee, K. L. (1978). End restraint effects on undrained static triaxial strength of sand. Journal of the Geotechnical Engineering Division, 104(6), 687-704. Mooney, M., Finno, R. and Viggiani, M. (1998). A unique critical state for sand? Journal of Geotechnical and Geoenvironmental Engineering, 124(11), 1100-1108. doi: doi:10.1061/(ASCE)1090-0241(1998)124:11(1100) Norris, G. M. (1981). Effect of end membrane thickness on the strength of 'frictionless' cap and base tests. Philadelphia, PA, ETATS-UNIS: American Society for Testing and Materials. Poulos, S., Castro, G. and France, J. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792. doi: doi:10.1061/(ASCE)0733-9410(1985)111:6(772) Raju, V. S., Sadasivan, S. K. and Venkataraman, M. (1972). Use of lubricated and conventional end platens in triaxial tests on sands. Soils and Foundations, 12(4), 35-43. Roscoe, K.H. and Burland, J.B. (1968). On The Generalised Stress-Strain Behaviour of ‘Wet’ Clay: Cambridge University Press. Roscoe, K. H., Schofield, A. N. and Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8(1), 22-53. Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 269(1339), 500-527. doi: 10.2307/2414551 Sadrekarimi, A. (2012). Effect of sample-preparation method on critical-satate behavior of sands. Geotechnical Testing Journal, 35(4), 104317. Schofield, A. N. and Wroth, C. P. (1968). Critical State Soil Mechanics: McGraw-Hill. Tatsuoka, F, and Haibara, O. (1985). Shear resistance between sand and smooth or lubricate surfaces. Soils and Foundations, 25(1), 88-98. Vasquez-Herrera, A. and Dobry, R. (1989). The behavior of undrained contractive sand and its effect on seismic liquefaction flow failures of earth structures Re-evaluation of the Lower San Fernando Dam: Report 3. US. Army Corps of Engineers Contract Report GL-89-2, U.S. Army Corps of Engineers Waterways Ex- periment Station, Vicksburg, Mississippi. Wood, D. M. (1990). Soil Behaviour and Critical State Soil Mechanics: Cambridge University Press. Yamamuro, J. and Lade, P. (1998). Steady-state concepts and static liquefaction of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 868-877. doi: doi:10.1061/(ASCE)1090-0241(1998)124:9(868) 李彥霆. (2009). 單剪試驗下細粒料對砂土臨界狀態參數之影響. (碩士論文), 國立暨南國際大學土木工程學系. 黃渝紋. (2012). 三軸壓縮試驗探討蜂巢格網的圍束效應. (碩士論文), 國立台灣大學土木工程學系. 鄒永銘. (1985). 端座潤滑對體積膨脹與顆粒破碎之影響. (碩士論文), 國立台灣大學土木工程學系. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61375 | - |
| dc.description.abstract | 臨界土壤力學在發展過程中,經過理論的推導與許多試驗結果,已建立一套完整的理論架構。從此架構下發展出彈塑模型-Modified Cam Clay model,廣泛的應用於數值分析上,來預測黏土受力後變形行為;此外,臨界狀態概念下所衍生之狀態參數 (state parameter),也可用於預測現地土壤的力學參數與變形行為,由上述可知臨界土壤力學確實能在工程分析與設計帶來幫助。
但許多文獻的試驗結果顯示,砂土之臨界狀態其孔隙比對平均有效應力呈現不唯一的線性關係,與理論架構下的唯一的線性關係有所差別,造成砂土之試驗結果與臨界土壤力學不符合的情形,因此有必要釐清砂土之臨界狀態真實情況。 為了解砂土臨界狀態之真實面貌,本研究採用石英砂進行一系列的三軸壓縮試驗,以相對密度、排水條件、有效圍壓為試驗變因,並加入潤滑端座 (lubricated end platen) 與解壓再壓試驗 (unloading-reloading) 方式,以探求試驗變因與試驗方式對石英砂之臨界狀態分布與其力學行為之影響。 試驗結果顯示:砂土之相對密度為影響三軸試驗結果重要的試驗變因,剪力強度、體積應變、應力應變、臨界狀態分布皆受其影響。而三軸試體高徑比大於2.4時,可忽略端座效應,試驗所得剪力強度與臨界狀態分布並不受端座效應所影響,此外,應力路徑與試體配置方式並不會影響臨界狀態線之形式。而試驗最後所得石英砂之臨界狀態,孔隙比與平均有效應力的關係與土壤初始孔隙比有關,與臨界土壤力學所建立之關係式不相同,因此建議砂土之臨界狀態有必要做進一布的探討。 | zh_TW |
| dc.description.abstract | The framework of the critical state soil mechanics has been estabilished through theoretical derivation and many experimental test results. Under this framework, the elastic-plastic Modified Cam Clay model is capable of predicting the deformation behavior of clay after loading. In addition, the development of state parameter under the concept of critical state can also be used to predict in-situ soil properties and deformation behavior. Therefor, critical state soil mechanics can bring many help in engineering analysis design.
However, it is indicated in the literatures that the relationship between the void ratio and the mean effective stress at critical state of sand does not uniquely exist, which differs from the fundamental definition of critical state soil mechanics. Hence, we need to clarify the critical state of sand. For clarifying the critical state and constitutive behaviors of qartz sand, this research carried out a series of triaxial compression tests. Test variables include relative density, drainage condition, effective confining pressure, and different test methods, namely the triaxial tests with lubricated end platens and unloading-reloading triaxial tests. The test results show that relative density affected shear strength, volumetric strain, stress-strain curve, and critical sate. It is the most important variable in triaxial test of sand. When the specimen height-to-diaimeter ratio is more than 2.4, the end platens have minimum effects on influencing shear strength and critical state. Further -more, sample preparation method and stress paths have little effect on critical state line. Test results also indicated that the relationship between the void ratio and the mean effective stress at critical state of quartz sand is not unique, where the initial void ratios may have effect on critical state conditions. According to test results, critical state of sand needs to be further studied. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:01:50Z (GMT). No. of bitstreams: 1 ntu-102-R00521124-1.pdf: 8488405 bytes, checksum: 83544470168237fe321ac6c20046e55b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 表目錄 VIII 圖目錄 IX 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法 2 1.4 研究架構 2 第二章 文獻回顧 4 2.1 土壤臨界狀態行為 4 2.2 砂土臨界狀態相關研究 6 2.2.1 砂土臨界狀態 6 2.2.2 三軸試驗 6 2.2.3 平面應變壓縮試驗 8 2.2.4 環剪試驗 9 2.3 三軸試驗與潤滑端座相關研究 10 2.4 小結 11 第三章 試驗方法 30 3.1 試驗規劃 30 3.2 試驗材料工程性質 31 3.2.1粒徑分析 31 3.2.2比重試驗 31 3.2.3最大與最小乾單位重試驗 31 3.3 試驗設備與校正 31 3.3.1三軸試驗儀器與設備 31 3.3.2 儀器校正 32 3.3.3 橡皮模勁度校正 32 3.4 土壤試體準備 33 3.5 三軸潤滑端座 36 3.5.1潤滑度試驗準備 36 3.5.2 潤滑度試驗結果 38 3.5.3 潤滑端座準備 38 第四章 試驗結果 52 4.1 相對密度71 %之三軸壓縮試驗 52 4.1.1 相對密度71 %之飽和壓密排水三軸 (CD) 試驗 52 4.1.2 相對密度71 %之飽和壓密不排水三軸 (CU) 試驗 53 4.1.3 相對密度71 %之unloading-reloading三軸CD試驗 54 4.1.4 相對密度71 %之潤滑端座三軸CD試驗 54 4.2 相對密度39 %之三軸壓縮試驗 55 4.2.1 相對密度39 %之三軸CD試驗 55 4.2.2 相對密度39 %之三軸CU試驗 56 4.3 相對密度21 %之三軸壓縮試驗 56 4.3.1 相對密度21 %之三軸CD試驗 57 4.3.2 相對密度21 %之三軸CU試驗 57 4.4 相對密度82 %之三軸壓縮試驗 58 4.4.1 相對密度82 %之三軸CD試驗 58 第五章 討論與分析 85 5.1 試驗變因對三軸試驗求得參數之影響 85 5.1.1 相對密度對三軸試驗影響 85 5.1.2 有效圍壓對三軸試驗影響 85 5.1.3 排水條件對三軸試驗影響 86 5.2 解壓再壓試驗對臨界狀態影響 87 5.3 潤滑端座對三軸試驗之影響 88 5.4 潤滑端座對臨界狀態之影響 88 5.5 試驗砂土之臨界狀態形式 90 第六章 結論與建議 111 6.1 結論 111 6.2 建議 112 參考文獻 113 附錄 三軸試驗儀器校正曲線 117 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三軸壓縮試驗 | zh_TW |
| dc.subject | 臨界狀態 | zh_TW |
| dc.subject | 臨界狀態線 | zh_TW |
| dc.subject | 潤滑端座 | zh_TW |
| dc.subject | 解壓再壓試驗 | zh_TW |
| dc.subject | triaxial compression test | en |
| dc.subject | critical state | en |
| dc.subject | critical state line | en |
| dc.subject | lubricated end platen | en |
| dc.subject | unloading-reloading triaxial test | en |
| dc.title | 傳統三軸應力路徑下石英砂之臨界狀態與其力學行為 | zh_TW |
| dc.title | Critical State and Constitutive Behavior of Quartz Sand under Conventional Triaxial Compression Tests | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 卿建業,歐章煜,楊國鑫 | |
| dc.subject.keyword | 三軸壓縮試驗,臨界狀態,臨界狀態線,潤滑端座,解壓再壓試驗, | zh_TW |
| dc.subject.keyword | triaxial compression test,critical state,critical state line,lubricated end platen,unloading-reloading triaxial test, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
