Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorLi-Jen Hsuen
dc.contributor.author許力仁zh_TW
dc.date.accessioned2021-06-16T13:01:40Z-
dc.date.available2015-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citationAgrawal, R. and R. Joseph (2000) Bioconversion of alpha pinene to verbenone by resting cells of Aspergillus niger. Applied Microbiology and Biotechnology 53: 335–337.
Aharoni, A., L. Gaidukov, O. Khersonsky, S.M. Gould, C. Roodveldt and D.S. Tawfik (2005) The ‘evolvability’ of promiscuous protein functions. Nature Genetics 37: 73–76.
Aharoni, A., M.A. Jongsma, T.Y. Kim, M.B. Ri, A.P. Giri, F.W.A. Verstappen, W. Schwab and H.J. Bouwmeester (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochemistry Reviews 5: 49–58.
Arbuck, S.G. and B.A. Blaylock (1995) Taxol: Clinical results and current issues in development, pp. 379–415. In Taxol: Science and applications. CRC Press. 448 pp.
Back, K. and J. Chappell (1996) Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proceedings of the National Academy of Sciences of the United States of America 93: 6841–6845.
Baldwin, I.T., R. Halitschke, A. Paschold, C.C. von Dahl and C.A. Preston (2006) Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311: 812–815.
Bohlmann, J., C.L. Steele and R. Croteau (1997) Monoterpene synthases from grand fir (Abies grandis). The Journal of Biological Chemistry 272: 21784–21792.
Bohlmann, J., G. Meyer-Gauen and R. Croteau (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America 95: 4126–4133.
Bordasch, R.P. and A.A. Berryman (1977) Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 2. Repellency of Abies grandis resins and some monoterpenes. The Canadian Entomologist 109: 95–100.
Brown, H.C. and P.V. Ramachandran (1992) Asymmetric reduction with chiral organoboranes based on alpha-pinene. Accounts of Chemical Research 25: 16–24.
Chen, F., D.K. Ro, J. Petri, J. Gershenzon, J. Bohlmann, E. Pichersky and D. Tholl (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiology 135: 1956–1966.
Clegg, M.T., M.P. Cummings and M.L. Durbin (1997) The evolution of plant nuclear genes. Proceedings of the National Academy of Sciences of the United States of America 94: 7791–7798.
Cook, S.P. and F.P. Hain (1988) Toxicity of host monoterpenes to Dendroctonus frontalis and Ips calligraphus (Coleoptera: Scolytidae). Journal of Entomological Science 23: 287–292.
Croteau, R. (1987) Biosynthesis and catabolism of monoterpenoids. Chemical Reviews 87: 929–954.
Croteau, R. and F. Karp (1977) Demonstration of a cyclic pyrophosphate intermediate in enzymatic conversion of neryl pyrophosphate to borneol. Archives of Biochemistry and Biophysics 184: 77–86.
Croteau, R. and F. Karp (1979) Biosynthesis of monoterpenes – hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Archives of Biochemistry and Biophysics 198: 523–532.
Croteau, R., D.M. Satterwhite, C.J. Wheeler and N.M. Felton (1989) Biosynthesis of monoterpenes – stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene. The Journal of Biological Chemistry 264: 2075–2080.
Croteau, R., J. Gershenzon, C.J. Wheeler and D.M. Satterwhite (1990) Biosynthesis of monoterpenes – stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Archives of Biochemistry and Biophysics 277: 374–381.
Croteau, R., M. Felton and R.C. Ronald (1980) Biosynthesis of monoterpenes – conversion of the acyclic precursors geranyl pyrophosphate and neryl pyrophosphate to the rearranged monoterpenes fenchol and fenchone by a soluble enzyme preparation from fennel (Foeniculum vulgare). Archives of Biochemistry and Biophysics 200: 524–533.
Davis, E.M. and R. Croteau (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topics in Current Chemistry 209: 54–95.
de Groot, R.C. (1972) Growth of wood-inhabiting fungi in saturated atmospheres of monoterpenoids. Mycologia 64: 863–870.
de Moraes, C.M., M.C. Mescher and J.H. Tumlinson (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580.
Degenhardt, J., T.G. Kollner and J. Gershenzon (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70: 1621–1637.
Dudareva, N., D. Martin, C.M. Kish, N. Kolosova, N. Gorenstein, J. Faldt, B. Miller and J. Bohlmann (2003) (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell 15: 1227–1241.
Emanuelsson, O., H. Nielsen and G. von Heijne (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8: 978–984.
Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel and A. Bairoch (2005) Protein identification and analysis tools on the ExPASy server, pp. 157–607. In The proteomics protocols handbook. Humana Press. 1016 pp.
Grasmann, J., S. Hippeli, R. Spitzenberger and E.F. Elstner (2005) The monoterpene terpinolene from the oil of Pinus mugo L. in concert with α-tocopherol and β-carotene effectively prevents oxidation of LDL. Phytomedicine 12: 416–423.
Green, S., C.J. Squire, N.J. Nieuwenhuizen, E.N. Baker and W. Laing (2009) Defining the potassium binding region in an apple terpene synthase. The Journal of Biological Chemistry 284: 8661–8669.
Green, S., E.N. Baker and W. Laing (2011) A non-synonymous nucleotide substitution can account for one evolutionary route to sesquiterpene synthase activity in the TPS-b subgroup. FEBS Letters 585: 1841–1846.
Greenhagen, B.T., P.E. O’Maille, J.P. Noel and J. Chappell (2006) Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proceedings of the National Academy of Sciences of the United States of America 103: 9826–9831.
Hall, D.E., P. Zerbe, S. Jancsik, A.L. Quesada, H. Dullat, L.L. Madilao, M. Yuen and J. Bohlmann (2013) Evolution of conifer diterpene synthases: Diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiology 161: 600–616.
Hallahan, T.W. and R. Croteau (1989) Monoterpene biosynthesis – mechanism and stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (+)- cis-sabinene and (+)-trans-sabinene hydrate. Archives of Biochemistry and Biophysics 269: 313–326.
Harvey, B.G., M.E. Wright and R.L. Quintana (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24: 267–273.
Hillwig, M.L., M. Xu, T. Toyomasu, M.S. Tiernan, G. Wei, G. Cui, L. Huang and R.J. Peters (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. The Plant Journal 68: 1051–1060.
Himejima, M., K.R. Hobson, T. Otsuka, D.L. Wood and I. Kubo (1992) Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. Journal of Chemical Ecology 18: 1809–1818.
Hoelscher, D.J., D.C. Williams, M.R. Wildung and R. Croteau (2003) A cDNA clone for 3-carene synthase from Salvia stenophylla. Phytochemistry 62: 1081–1086.
Huber, D.P.W., R.N. Philippe, K.A. Godard, R.N. Sturrock and J. Bohlmann (2005) Characterization of four terpene synthase cDNAs from methyl jasmonateinduced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66: 1427–1439.
Hyatt, D.C. and R. Croteau (2005) Mutational analysis of a monoterpene synthase reaction: Altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Archives of Biochemistry and Biophysics 439: 222–233.
Ibanez, S., S. Dotterl, M.C. Anstett, S. Baudino, J.C. Caissard, C. Gallet and L. Despres (2010) The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytologist 188: 451–463.
Iijima, Y., D.R. Gang, E. Fridman, E. Lewinsohn and E. Pichersky (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiology 134: 370–379.
Iijima, Y., R. Davidovich-Rikanati, E. Fridman, D.R. Gang, E. Bar, E. Lewinsohn and E. Pichersky (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiology 136: 3724–3736.
Jensen, R.A. (1976) Enzyme recruitment in evolution of new function. Annual Review of Microbiology 30: 409–425.
Joshi, R.M. (1972) Bond energy/group contribution methods of calculating the standard heat of formation: Development of a new generalized bond-energy scheme for monomers and polymers. Part III. Alicyclic hydrocarbons. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 6: 595–629.
Kampranis, S.C., D. Ioannidis, A. Purvis, W. Mahrez, E. Ninga, N.A. Katerelos, S. Anssour, J.M. Dunwell, J. Degenhardt, A.M. Makris, P.W. Goodenough and C.B. Johnson (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. The Plant Cell 19: 1994–2005.
Keeling, C.I. and J. Bohlmann (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170: 657–675.
Keeling, C.I., S. Weisshaar, S.G. Ralph, S. Jancsik, B. Hamberger, H.K. Dullat, J. Bohlmann (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biology 11: 43–56.
Kegge, W. and R. Pierik (2010) Biogenic volatile organic compounds and plant competition. Trends in Plant Science 15: 126–132.
Kirby, J. and J.D. Keasling (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology 60: 335–355.
Koksal, M., H. Hu, R.M. Coates, R.J. Peters and D.W. Christianson (2012) Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nature Chemical Biology 7: 431–433.
Koksal, M., Y. Jin, R.M. Coates, R. Croteau and D.W. Christianson (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469: 116–120.
Kollner, T.G., P.E. O’Maille, N. Gatto, W. Boland, J. Gershenzon and J. Degenhardt (2006) Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Archives of Biochemistry and Biophysics 448: 83–92.
LaFever, R.E. and R. Croteau (1993) Hydride shifts in the biosynthesis of the p-menthane monoterpenes α-terpinene, γ-terpinene, and β-phellandrene. Archives of Biochemistry and Biophysics 301: 361–366.
Leite, A.M., E.O. Lima , E.L. Souza, M.F.F.M. Diniz, V.N. Trajano and I.A. Medeiros (2007) Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Brazilian Journal of Pharmaceutical Sciences 43: 121–126.
Lesburg, C.A., G. Zhai, D.E. Cane and D.W. Christianson (1997) Crystal structure of pentalenene synthase: Mechanistic insights on terpenoid cyclization reactions in biology. Science 277: 1820–1824.
Lichtenthaler, H.K. (1999) The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 47–65.
Lindgren, B.S., G. Nordlander and G. Birgersson (1996) Feeding deterrence of verbenone to the pine weevil, Hylobius abietis (L.) (Col., Curculionidae). Journal of Applied Entomology 120: 397–403.
MacMillan, J. and M. Beale (1999) Diterpene biosynthesis, pp. 217–243. In Comprehensive natural products chemistry: Isoprenoids including carotenoids and steroids, vol. 2. Pergamon Press. 484 pp.
Martin, D.M. and J. Bohlmann (2004) Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 65: 1223–1229.
Martin, D.M., J. Faldt and J. Bohlmann (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology 135: 1908–1927.
McAndrew, R.P., P.P. Peralta-Yahya, A. DeGiovanni, J.H. Pereira, M.Z. Hadi, J.D. Keasling and P.D. Adams (2011) Structure of a three-domain sesquiterpene synthase: A prospective target for advanced biofuels production. Structure 19: 1876–1884.
Miki, S. (1954) The occurrence of the remain of Taiwania and Palaeotsuga (n. subg.) from Pliocene beds in Japan. Proceedings of the Japan Academy 30: 976–981.
Mildvan, A.S. (2004) Inverse thinking about double mutants of enzymes. Biochemistry 43: 14517–14520.
Mirov, N.T. (1961) Composition of gum turpentines of pines. United States Department of Agriculture. 158 pp.
O’Brien, P.J. and D. Herschlag (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry & Biology 6: R91–R105.
Peralta-Yahya, P.P., M. Ouellet, R. Chan, M. Mukhopadhyay, J. Keasling and T.S. Lee (2011). Identification and microbial production of a terpenebased advanced biofuel. Nature Communications 2: 483.
Pitman, G.B. (1971) Trans-Verbenol and alpha-pinene: Their utility in manipulation of the mountain pine beetle. Journal of Economic Entomology 64: 426–430.
Rabe, P. and J.S. Dickschat (2013) Rapid chemical characterization of bacterial terpene synthases. Angewandte Chemie International Edition 52: 1810–1812.
Ravid, U., E. Putievsky, I. Katzir, E. Lewinsohn and N. Dudai (1997) Identification of (1R)(+)-verbenone in essential oils of Rosmarinus officinalis L. Flavour and Fragrance Journal 12: 1109–1112.
Renninger, N. and D. McPhee (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. United States Patent No. 7399323.
Rising, K.A., C.M. Starks, J.P. Noel and J. Chappell (2000) Demonstration of germacrene A as an intermediate in 5-epi-aristolochene synthase catalysis. Journal of the American Chemical Society 122: 1861–1866.
Riyazi, A., A. Hensel, K. Bauer, N. Geisler, S. Schaaf and E.J. Verspohl (2007) The effect of the volatile oil from ginger rhizomes (Zingiber officinale), its fractions and isolated compounds on the 5-HT3 receptor complex and the serotoninergic system of the rat ileum. Planta medica 73: 355–362.
Robert, J.A., L.L. Madilao, R. White, A. Yanchuk, J. King and J. Bohlmann (2010) Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany 88: 810–820.
Ruzlcka, L. (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9: 357–367.
Rynkiewicz, M.J., D.E. Cane and D.W. Christianson (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proceedings of the National Academy of Sciences of the United States of America 98: 13543–13548.
Sapir-Mir, M., A. Mett, E. Belausov, S. Tal-Meshulam, A. Frydman, D. Gidoni and Y. Eyal (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology 148: 1219–1228.
Shimada, T., T. Endo, H. Fujii and M. Omura (2005) Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in Citrus unshiu Marc. Scientia Horticulturae 105: 507–512.
Smith, R.H. (1965) Effects of monoterpene vapors on the western pine beetle. Journal of Economic Entomology 58: 509–510.
Starks, C.M., K. Back, J. Chappell and J.P. Noel (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277: 1815–1820.
Takahashi, S. and T. Koyama (2006) Structure and function of cis-prenyl chain elongating enzymes. The Chemical Record 6: 194–205.
Tamarin, R.H. (2001) Gene expression: Transcription, pp. 243–279. In Principles of genetics, 7th ed. Tata McGraw-Hill Education. 685 pp.
Tarshis, L.C., M. Yan, C.D. Poulter and J.C. Sacchettini (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 33: 10871–10877.
Trapp, S.C. and R. Croteau (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158: 811–832.
Turner, G.W. and R. Croteau (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiology 136: 4215–4227.
Wallach, O. (1914) Terpene und campher: Zusammenfassung eigener untersuchungen auf dem gebiet der alicyclischen kohlenstoffverbindungen, 2nd ed. University of California Libraries. 616 pp.
Wang, K.C. and S.I. Ohnuma (2000) Isoprenyl diphosphate synthases. Biochimica et Biophysica Acta 1529: 33–48.
Wells, J.A. (1990) Additivity of mutational effects in proteins. Biochemistry 29: 8509–8517.
Wendt, K.U. and G.E. Schulz (1998) Isoprenoid biosynthesis: Manifold chemistry catalyzed by similar enzymes. Structure 6: 127–133.
Wendt, K.U., K. Poralla and G.E. Schulz (1997). Structure and function of a squalene cyclase. Science 277: 1811–1815.
Wheeler, C.J. and R. Croteau (1986) Monoterpene cyclases – use of the noncyclizable substrate-analog 6, 7-dihydrogeranyl pyrophosphate to uncouple the isomerization step of the coupled isomerization cyclization reaction. Archives of Biochemistry and Biophysics 246: 733–742.
Whittington, D.A., M.L. Wise, M. Urbansky, R.M. Coates, R.B. Croteau and D.W. Christianson (2002) Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. Proceedings of the National Academy of Sciences of the United States of America 99: 15375–15380.
Williams, D.C., D.J. McGarvey, E.J. Katahira and R. Croteau (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37: 12213–12220.
Yoshikuni, Y., T.E. Ferrin and J.D. Keasling (2006) Designed divergent evolution of enzyme function. Nature 440: 1078–1082.
Zhou, K. and R.J. Peters (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70: 366–369.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61364-
dc.description.abstract萜類合成酶(terpene synthases)的蛋白質結構與其功能性間之關聯性,長期以來一直是相關酵素改質工程所面臨的最大挑戰。本研究首先藉由設計退化性引子(degenerate primer)、聚合酶連鎖反應(polymerase chain reaction, PCR)與cDNA末端快速增幅(rapid amplification of cDNA ends, RACE)等方式,順利地自臺灣杉(Taiwania cryptomerioides)葉部選殖到單萜合成酶基因Tc-αpin/teo與Tc-teo;再透過比較兩者胺基酸序列與產物上的差異性,輔以同源模擬(homology modeling)及定點突變(site-directed mutagenesis)等技術,成功地在Tc-αPIN/TEO蛋白質結構中,界定出三個對萜類(terpenes)二次環化機制(secondary cyclization mechanism)有決定性影響力的塑性殘基(plasticity residues),分別為Y327、Y429與Y575。將這些tyrosine突變成phenylalanine的試驗結果顯示,其胺基酸支鏈(side chain)上之hydroxyl groups,可能藉由協同作用(synergistic effect)共同幫助碳陽離子(carbocation)進行二次環化。這些發現,或許能使我們對於複雜的萜類生合成步驟有更深入的瞭解,並作為未來蛋白質工程(protein engineering)試驗設計之參考。zh_TW
dc.description.abstractThe ambiguous protein structure-function correlation of terpene synthases has been a challenge for protein engineers. Thus, we intended to decipher the determinants associated with the product specificity of terpene synthases. Using polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods, we successfully cloned two monoterpene synthase genes, Tc-αpin/teo and Tc-teo, from Taiwania cryptomerioides. The enzymes encoded by these genes shared 97% similarity of amino acid sequences, but had different terpene product profiles. We adopted homology modeling to compare the structural differences between Tc-αPIN/TEO and Tc-TEO, and successfully identified three plasticity residues involved in secondary cyclization around the active site of Tc-αPIN/TEO, namely Y327, Y429 and Y575. In the site-directed mutagenesis experiments, converting these phenolic residues into phenylalanines resulted in a dramatic decrease in the synthesis of α-pinene, indicating that the hydroxyl group of tyrosine may play an important role in the synthesis of bicyclic terpene products. This finding may assist our understanding of the complex cyclization processes and protein engineering design in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:40Z (GMT). No. of bitstreams: 1
ntu-102-R00625018-1.pdf: 5266866 bytes, checksum: 59ae4c7562582c9a0c0cae37c15ea1af (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xiii
一、 前言 1
1.1 萜類(Terpenes)與萜類合成酶(Terpene synthases, TPS) 1
1.2 萜類之應用 1
1.3 臺灣杉與萜類合成酶基因家族之演化地位 2
1.4 本研究之目的 3
二、 文獻探討 4
2.1 裸子植物萜類合成酶之分群 4
2.2 裸子植物單萜合成酶基因之內隱子分布情形 5
2.3 單萜生合成路徑 6
2.4 單萜生合成機制 7
2.5 萜類合成酶的蛋白質結構 11
2.5.1 引發催化反應之重要功能區域(Catalysis-initiating motifs) 12
2.5.2 具穩定碳陽離子能力之殘基(Carbocation-stabilizing residues) 15
2.5.3 演化保守的Double-arginine motif (RRX8W)與RXR motif 17
2.5.4 鉀離子結合區域(Potassium-binding region) 19
2.6 萜類合成酶蛋白質結構─功能模式 21
三、 試驗材料與方法 24
3.1 植物試材 24
3.2 臺灣杉單萜合成酶基因之選殖 24
3.3 單萜合成酶基因內隱子之取得 28
3.4 裸子植物萜類合成酶相似度樹狀圖(Dendrogram)分析 28
3.5 葉綠體運輸胜肽及蛋白質分子量(Mw)、等電點(pI)之預測 30
3.6 蛋白質表現質體之構築(Construction) 31
3.7 西方墨點雜合分析(Western blotting analysis) 31
3.8 重組蛋白質(Recombinant protein)誘導大量表現 33
3.9 目標蛋白質之純化 33
3.10 目標蛋白之萜類產物分析(GC-MS) 34
3.11 蛋白質結構模擬 34
3.12 定點突變試驗(Site-directed mutagenesis) 35
四、 結果 39
4.1 臺灣杉單萜合成酶基因Tc-αpin/teo與Tc-teo 39
4.2 Tc-αpin/teo與Tc-teo內隱子分布情形 41
4.3 裸子植物萜類合成酶相似度樹狀圖分析 43
4.4 Tc-αPIN/TEO與Tc-TEO蛋白質純化與活性反應分析 45
4.5 Tc-αPIN/TEO與Tc-TEO模擬蛋白質結構 46
4.6 定點突變試驗 48
五、 討論 57
5.1 Tc-αpin/teo與Tc-teo之內隱子分布情形 57
5.2 裸子植物萜類合成酶相似度樹狀圖分析 58
5.3 Tc-αPIN/TEO與Tc-TEO之蛋白質特性 61
5.4 萜類合成酶蛋白質結構與二次環化機制之相關性 68
5.5 Terpinolene與α-pinene可能的生合成機制 72
5.6 Terpinolene與α-pinene的生物活性及相關應用 74
六、 結論 76
七、 參考文獻 77
dc.language.isozh-TW
dc.subject合成&#37238zh_TW
dc.subject單&#33820zh_TW
dc.subject定點突變zh_TW
dc.subject二次環化zh_TW
dc.subject臺灣杉zh_TW
dc.subjectsecondary cyclizationen
dc.subjectsite-directed mutagenesisen
dc.subjectTaiwania cryptomerioidesen
dc.subjectmonoterpene synthaseen
dc.title臺灣杉單萜合成酶基因選殖與單萜二次環化機制zh_TW
dc.titleGene Cloning of Monoterpene Synthases from Taiwania cryptomerioides and Illustration of the Secondary Cyclization Mechanismen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑華(Shu-Hwa Chang),鍾國芳(Kuo-Fang Chung),王升陽(Sheng-Yang Wang),楊健志(Chien-Chih Yang)
dc.subject.keyword單&#33820,合成&#37238,二次環化,定點突變,臺灣杉,zh_TW
dc.subject.keywordmonoterpene synthase,secondary cyclization,site-directed mutagenesis,Taiwania cryptomerioides,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2013-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved