請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61354完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文(Chia-Wen Wu) | |
| dc.contributor.author | Ya-Dong Chiang | en |
| dc.contributor.author | 江亞東 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:01:30Z | - |
| dc.date.available | 2015-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-07 | |
| dc.identifier.citation | (1) Hakes, J. U.S. Energy Information Administration, 2000.
(2) IndexMuldi: http://www.indexmundi.com (3) BP Statistical Review of World Energy June 2012, BP, 2012. (4) Gani, A.; Naruse, I. Renewable Energy 2007, 32, 649. (5) Jeoh, T.; Ishizawa, C. I.; Davis, M. F.; Himmel, M. E.; Adney, W. S.; Johnson, D. K. Biotechnology and Bioengineering 2007, 98, 112. (6) Piorreck, M.; Baasch, K. H.; Pohl, P. Phytochemistry 1984, 23, 207. (7) Singh, S. P.; Singh, D. Renewable & Sustainable Energy Reviews 2010, 14, 200. (8) Gao, Y.; Gregor, C.; Liang, Y.; Tang, D.; Tweed, C. Chemistry Central Journal 2012, 6. (9) Scott, S. A.; Davey, M. P.; Dennis, J. S.; Horst, I.; Howe, C. J.; Lea-Smith, D. J.; Smith, A. G. Current Opinion in Biotechnology 2010, 21, 277. (10) Campbell, M. N. Guelph Engineering Journal 2008, 1, 2. (11) Demirbas, A. Energy Sources Part a-Recovery Utilization and Environmental Effects 2009, 31, 163. (12) Demirbas, A.; Demirbas, M. F. Energy Conversion and Management 2011, 52, 163. (13) Sander, K.; Murthy, G. S. International Journal of Life Cycle Assessment 2010, 15, 704. (14) Vijayaraghavan, K.; Hemanathan, K. Energy & Fuels 2009, 23, 5448. (15) Hulatt, C. J.; Thomas, D. N. Bioresource Technology 2011, 102, 5775. (16) Li, Z.; Yuan, H.; Yang, J.; Li, B. Bioresource Technology 2011, 102, 9128. (17) Oswald, W. J.; Gotaas, H. B.; Golueke, C. G.; Kellen, W. R. Sewage and Industrial Wastes 1957, 29, 437. (18) Kothari, R.; Pathak, V. V.; Kumar, V.; Singh, D. P. Bioresource Technology 2012, 116, 466. (19) Huang, Y.-T.; Su, C.-P. International Journal of Environmental Science and Technology 2013, 1. (20) American Society for Testing and Materials. (21) Demirbas, A. Energy Policy 2007, 35, 4661. (22) Tyson, K. S. Biodiesel Handling and Use Guideline, 2009. (23) Demirbas, A. H. Energy Educ. Sci. Technol.-Part A 2009, 23, 1. (24) Patil, P. D.; Reddy, H.; Muppaneni, T.; Mannarswamy, A.; Schuab, T.; Holguin, F. O.; Lammers, P.; Nirmalakhandan, N.; Cooke, P.; Deng, S. G. Green Chem. 2012, 14, 809. (25) Prabakaran, P.; Ravindran, A. D. Lett. Appl. Microbiol. 2011, 53, 150. (26) Halim, R.; Danquah, M. K.; Webley, P. A. Biotechnology Advances 2012, 30, 709. (27) Teixeira, R. E. Green Chem. 2012, 14, 419. (28) Kim, Y. H.; Choi, Y. K.; Park, J.; Lee, S.; Yang, Y. H.; Kim, H. J.; Park, T. J.; Kim, Y. H.; Lee, S. H. Bioresource Technology 2012, 109, 312. (29) Kates, M. Techniques of lipidology isolation, analysis, and identification of lipids; Elsevier Science Publisher: Amsterdam, 1986; Vol. 3. (30) Hawash, S.; Kamal, N.; Zaher, F.; Kenawi, O.; El Diwani, G. Fuel 2009, 88, 579. (31) Hernandez-Martin, E.; Otero, C. Bioresource Technology 2008, 99, 277. (32) Vicente, G.; Martinez, M.; Aracil, J. Bioresource Technology 2004, 92, 297. (33) Zhang, Y.; Dube, M. A.; McLean, D. D.; Kates, M. Bioresource Technology 2003, 89, 1. (34) Chouhan, A. P. S.; Sarma, A. K. Renewable & Sustainable Energy Reviews 2011, 15, 4378. (35) Borges, M. E.; Diaz, L. Renewable & Sustainable Energy Reviews 2012, 16, 2839. (36) Ma, F. R.; Hanna, M. A. Bioresource Technology 1999, 70, 1. (37) Viriya-empikul, N.; Krasae, P.; Puttasawat, B.; Yoosuk, B.; Chollacoop, N.; Faungnawakij, K. Bioresource Technology 2010, 101, 3765. (38) Cho, Y. B.; Seo, G. Bioresource Technology 2010, 101, 8515. (39) Yoosuk, B.; Udomsap, P.; Puttasawat, B.; Krasae, P. Chemical Engineering Journal 2010, 162, 135. (40) Bai, H.-x.; Shen, X.-z.; Liu, X.-h.; Liu, S.-y. Transactions of Nonferrous Metals Society of China 2009, 19, S674. (41) Shu, Q.; Gao, J. X.; Nawaz, Z. S.; Liao, Y. H.; Wang, D. Z.; Wang, J. F. Applied Energy 2010, 87, 2589. (42) Dehkhoda, A. M.; West, A. H.; Ellis, N. Applied Catalysis a-General 2010, 382, 197. (43) Lou, W.-Y.; Zong, M.-H.; Duan, Z.-Q. Bioresource Technology 2008, 99, 8752. (44) Jimenez-Morales, I.; Santamaria-Gonzalez, J.; Maireles-Torres, P.; Jimenez-Lopez, A. Applied Catalysis B-Environmental 2011, 103, 91. (45) Kafuku, G.; Lam, M. K.; Kansedo, J.; Lee, K. T.; Mbarawa, M. Fuel Processing Technology 2010, 91, 1525. (46) Kurusu, Y. Chinese Journal of Polymer Science 1999, 17, 1. (47) Vinu, A.; Hossain, K. Z.; Ariga, K. Journal of Nanoscience and Nanotechnology 2005, 5, 347. (48) Meloni, D.; Monaci, R.; Zedde, Z.; Cutrufello, M. G.; Fiorilli, S.; Ferino, I. Applied Catalysis B-Environmental 2011, 102, 505. (49) Haas, M. J.; Wagner, K. European Journal of Lipid Science and Technology 2011, 113, 1219. (50) Velasquez-Orta, S. B.; Lee, J. G. M.; Harvey, A. Fuel 2012, 94, 544. (51) Chen, L.; Liu, T.; Zhang, W.; Chen, X.; Wang, J. Bioresource Technology 2012, 111, 208. (52) Jones, J.; Lee, C.-H.; Wang, J.; Poenie, M. Energies 2012, 5, 2608. (53) Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H. Chemistry of Materials 2012, 24, 4572. (54) Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Journal of the American Chemical Society 2008, 130, 28. (55) Freedman, B.; Pryde, E. H.; Mounts, T. L. Journal of the American Oil Chemists Society 1984, 61, 1638. (56) Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Renewable & Sustainable Energy Reviews 2007, 11, 1300. (57) Garces, R.; Mancha, M. Analytical Biochemistry 1993, 211, 139. (58) Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Angewandte Chemie-International Edition 2005, 44, 5038. (59) Jaenicke, S.; Chuah, G. K.; Lin, X. H.; Hu, X. C. Microporous and Mesoporous Materials 2000, 35-6, 143. (60) Leung, D. Y. C.; Wu, X.; Leung, M. K. H. Applied Energy 2010, 87, 1083. (61) Dornish, M.; Hagen, A.; Borgersen, B.; Skaugrud, O. In Vitro Cellular and Developmental Biology Animal 1999, 35. (62) Chiang, Y.-D.; Lian, H.-Y.; Leo, S.-Y.; Wang, S.-G.; Yamauchi, Y.; Wu, K. C. W. Journal of Physical Chemistry C 2011, 115, 13158. (63) Weissleder, R.; Elizondo, G.; Wittenberg, J.; Rabito, C. A.; Bengele, H. H.; Josephson, L. Radiology 1990, 175, 489. (64) Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Angewandte Chemie-International Edition 2005, 44, 2782. (65) Kruk, M.; Jaroniec, M. Chem. Mat. 2001, 13, 3169. (66) Zhdanov, S. P.; Kosheleva, L. S.; Titova, T. I. Langmuir 1987, 3, 960. (67) Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric identification of organic compounds; John Wiley & Sons: Hoboken, NJ, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61354 | - |
| dc.description.abstract | 近半世紀以來再生能源原料之研究受到全球各界關注。其中,比起其他生質原料如大豆、甘蔗以及玉米等,由於微藻的較佳的環境友善性、低土地佔有率以及高產油率,微藻被認為極具有取代傳統石化燃料的可能性。為了能有效利用微藻內的油脂,植物細胞壁的破壞或是油脂的萃取技術成為重要的課題之一。因此,本論文將分析整理從微藻原料產製生質柴油前,不同預處理後的原料如乾藻,溼藻、粗製藻油對於後續轉酯化反應之影響。(註:本轉酯化反應係以甘油酯以及甲醇為原料生成脂肪酸甲酯)
透過本論文中的數據分析,藉由共溶劑萃取法製成的粗製藻油是較佳的油料來源。雙環胍型(註:本論文使用Triazabicyclodecene, TBD)的鹼性官能化氧化鐵氧化矽奈米粒子在常壓65oC的環境行轉酯化催化反應,其最佳的產率為97.13%。本催化劑屬核殼結構,若包含氧化矽的殼,其粒徑為20.0奈米;其氧化鐵核的粒徑為15.2奈米並具有超順磁性,可在ㄧ分鐘內完成催化劑在反應液的分離。因此,在與其他以商業化的催化劑比較後,我們認為此催化劑提供生質柴油產製的過程中低反應門檻、高產率以易回收的催化劑選擇。 | zh_TW |
| dc.description.abstract | Renewable energy sources have received great attention as substitutes for fossil fuels, and among them, micro-algae has become a potential choice because it is more eco-friendly, occupies less land, and has a higher production rate than other candi-dates such as soybeans, sugar canes, and corn. However, with lipids (i.e. glycerides) accumulated during metabolism, cell wall is the barrier between lipids and solid cata-lysts. Fatty acid methyl esters, which are the so-called biodiesel, can be produced through transesterification. Herein, we analyzed and summarized the merits and drawbacks of three types of oil sources (i.e. dried algae, algae oil, and algae concen-trate) as reactants in a one-pot biodiesel conversion process.
Algae oil was extracted through a modified co-solvent extraction method and is considered to be an ideal oil source in this thesis. Through transesterification at nor-mal pressure and 65oC, the highest yield is 97.13% that was achieved by using triazabicyclodecene functionalized Fe3O4@silca nanoparticles with a diameter of 20.0 nm as catalyst. With Fe3O4 cores of a diameter of 15.2 nm, catalytic nanoparticles can be separated from solution within one minute under an external magnetic field due to their superparamagnetism. Therefore, we provided a recyclable catalyst with a low reaction threshold but high FAME yield in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:01:30Z (GMT). No. of bitstreams: 1 ntu-102-R00524099-1.pdf: 2946597 bytes, checksum: bf0337223450c7dda94ab142c94689ab (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1. INTRODUCTION 1
1.1. PETROLEUM SHORTAGE 1 1.2. BIOMASS DEVELOPMENT 5 1.3. ALGAL BIOMASS 8 1.4. PRODUCTION OF BIO-DIESEL 10 2. PAPER SURVEY 18 2.1. CATALYSTS FOR TRANSESTERIFICATION 18 2.2. CATALYSTS APPLIED IN ALGAE-TO-BIODIESEL CONVERSION 23 3. OBJECTIVE 25 4. EXPERIMENTAL 28 4.1. CHEMICALS AND MATERIALS 28 4.2. EQUIPMENT 30 4.3. PRODUCTION OF BIODIESEL FROM ALGAL BIOMASS 31 4.3.1. Preparation of algae concentrate (AC), dried-algae (DA) and algae oil (AO) solution 32 4.3.2. Homogeneous transesterification 33 4.3.3. Heterogeneous transesterification 34 4.3.4. One-step extraction and FAMEs preparation method 34 4.4. CATALYST SYNTHESIS 36 4.4.1. Fe3O4 nanoparticles 36 4.4.2. Fe3O4@silica core-shell structured nanoparticles 37 4.4.3. Functionalization with the basic (TBD) group 38 4.5. CHARACTERIZATION 39 4.5.1. Scanning electron microscope (SEM) 39 4.5.2. Transmitting electron microscope (TEM) 39 4.5.3. Specific surface area analyzer 39 4.5.4. X-ray diffracatometer (XRD) 40 4.5.5. Zeta-sizer 40 4.5.6. FTIR (Fourier transform infrared) 40 4.5.7. Composition analysis of FAMEs 41 4.5.8. Composition analysis of glycerides 46 4.6. ANALYSIS OF YIELD OF FAMES 49 5. RESULTS AND DISCUSSION 50 5.1. CHARACTERIZATION OF ALGAE OIL 50 5.1.1. Glycerides composition in algae 50 5.1.2. Maximum FAMEs prepared from algal biomass 51 5.1.3. Oil extraction from algae biomass 53 5.1.4. Instability of algae concentrate 54 5.1.5. Inhibition by the cell wall 55 5.1.6. Inhibition by Water 56 5.2. EFFICACY OF CHLORIDE-BASED CATALYST FOR BIODIESEL PRODUCTION 58 5.3. CHARACTERIZATION OF TBD-FE3O4@SILICA 60 5.4. PRODUCTION OF BIODIESEL USING TBD-FE3O4@SILICA 70 6. CONCLUSION 72 7. FUTRUE PROSPECTS 74 8. REFERENCE 75 APPENDIX A 79 APPENDIX B 83 | |
| dc.language.iso | en | |
| dc.subject | 三疊氮雙環癸烯 | zh_TW |
| dc.subject | 生質柴油 | zh_TW |
| dc.subject | 核殼結構 | zh_TW |
| dc.subject | 微藻 | zh_TW |
| dc.subject | 轉酯化 | zh_TW |
| dc.subject | microalgae | en |
| dc.subject | triazabicyclodecene | en |
| dc.subject | biodiesel | en |
| dc.subject | core-shell | en |
| dc.subject | transesterification | en |
| dc.title | 三疊氮雙環癸烯官能化核殼結構氧化鐵/氧化矽奈米粒子於共溶劑萃取微藻油脂轉換生質柴油之催化應用 | zh_TW |
| dc.title | Triazabicyclodecene Functionalized Fe3O4@silica
Nanoparticles as an Effective Catalyst for Biodiesel Production from a Co-Solvent Extracted Algae Oil | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳紀聖(Chi-Sheng Wu),林錕松(Kuen-Song Lin),盧文章(Wen-Jang Lu),林裕川(Yu-Chuan Lin),山內悠輔(Yusuke Yamauchi) | |
| dc.subject.keyword | 三疊氮雙環癸烯,生質柴油,核殼結構,微藻,轉酯化, | zh_TW |
| dc.subject.keyword | triazabicyclodecene,biodiesel,core-shell,microalgae,transesterification, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
