Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61350
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰(Mike Y. Chen)
dc.contributor.authorShih-Hung Liuen
dc.contributor.author劉式閎zh_TW
dc.date.accessioned2021-06-16T13:01:27Z-
dc.date.available2020-07-17
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-06-29
dc.identifier.citationK. Aoyama, H. Iizuka, H. Ando, and T. Maeda. Four-pole galvanic vestibular stimulation causes body sway about three axes. Scientific Reports, 5(1):10168, 2015.
M. Baarspul. A review of flight simulation techniques. Progress in Aerospace Sciences, 27(1):1 – 120, 1990.
S. Beard, L. Ringo, B. Mader, E. Buchmann, and T. Tanita. Space shuttle landing and rollout training at the vertical motion simulator. AIAA Modeling and Simulation Technologies Conference and Exhibit, 08 2008.
L.-P. Cheng, P. Lühne, P. Lopes, C. Sterz, and P. Baudisch. Haptic turk: A motion platform based on people. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages 3463–3472, New York, NY, USA,2014. ACM.
F. Danieau, J. Fleureau, P. Guillotel, N. Mollet, A. Lécuyer, and M. Christie. Hapseat: Producing motion sensation with multiple force-feedback devices embedded in a seat. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology, VRST ’12, pages 69–76, New York, NY, USA, 2012. ACM.
DOF Reality Motion Simulators. Full motion simulator 2,3,6 axis platforms for pc home flight and racing games, Retrieved 2019.
B. Dupuits, M. Pleshkov, F. Lucieer, N. Guinand, A. Pérez Fornos, J. P. Guyot, H. Kingma, and R. van de Berg. A new and faster test to assess vestibular perception. Frontiers in Neurology, 10:707, 2019.
L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display and motion system delays on operator performance and uneasiness in a driving simulator. Human Factors, 30(2):201–217, 1988. PMID: 3384446.
G. Gálvez-García, M. Hay, and C. Gabaude. Alleviating simulator sickness with galvanic cutaneous stimulation. Human Factors, 57(4):649–657, 2015. PMID:25977323.
J. Gong, D.-Y. Huang, T. Seyed, T. Lin, T. Hou, X. Liu, M. Yang, B. Yang, Y. Zhang, and X.D. Yang. Jetto: Using lateral force feedback for smartwatch interactions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 426:1–426:14, New York, NY, USA, 2018. ACM.
J. Gugenheimer, D. Wolf, E. R. Eiriksson, P. Maes, and E. Rukzio. Gyrovr: Simulating inertia in virtual reality using head worn flywheels. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pages 227–232, New York, NY, USA, 2016. ACM.
H. Gurocak, S. Jayaram, B. Parrish, and U. Jayaram. Weight sensation in virtual environments using a haptic device with air jets. J. Comput. Inf. Sci. Eng., 3:130–135, 06 2003.
P. Hancock, D. Vincenzi, J. Wise, and M. Mouloua. Human Factors in Simulation and Training. CRC Press, 2008.
L. R. Harris, M. R. Jenkin, D. Zikovitz, F. Redlick, P. Jaekl, U. T. Jasiobedzka, H. L.Jenkin, and R. S. Allison. Simulating self-motion i: Cues for the perception of motion.Virtual Reality, 6(2):75–85, Sept. 2002.
S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages525:1–525:11, New York, NY, USA, 2018. ACM.
S. Je, M. J. Kim, W. Lee, B. Lee, X.-D. Yang, P. Lopes, and A. Bianchi. Aero-plane: A handheld force-feedback device that renders weight motion illusion on a virtual2d plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST’19, page 763–775, New York, NY, USA, 2019.Association for Computing Machinery.
S. Je, H. Lee, M. J. Kim, and A. Bianchi. Wind-blaster: A wearable propeller-based prototype that provides ungrounded force-feedback. In ACMSIGGRAPH 2018 Emerging Technologies, SIGGRAPH ’18, pages 23:1–23:2, New York, NY, USA,2018. ACM.
L. A. Jones and H. Z. Tan. Application of psychophysical techniques to haptic research. IEEE transactions on haptics, 6(3):268–284, 2012.
B. Keshavarz, B. E. Riecke, L. J. Hettinger, and J. L. Campos. Vection and visually induced motion sickness: how are they related? Frontiers in psychology, 6:472–472, Apr. 2015. 25941509[pmid].
Y. Kon, T. Nakamura, R. Sakuraqi, H. Shlonolrl, V. Yem, and H. Kajirnoto. Hang-erover: Development of hmo-embedded haptic display using the hanger reflex and vr application. In2018 IEEE Conference on Virtual Reality and 3D User Interfaces(VR), pages 765–766, 2018.
Kunos Simulazioni. Assetto corsa, 2014.
Kunos Simulazioni. Assetto corsa remote telemetry documentation, 2014.
M. R. Leek. Adaptive procedures in psychophysical research. Perception psychophysics, 63(8):1279–1292, 2001.
B. Lenggenhager, C. Lopez, and O. Blanke. Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. Experimental Brain Research, 184(2):211–221, Jan 2008.
S. Mack, E. Kandel, T. Jessell, J. Schwartz, S. Siegelbaum, and A. Hudspeth. Principles of Neural Science, Fifth Edition. Principles of Neural Science. McGraw-Hill Education, 2013.
T. Maeda, H. Ando, and M. Sugimoto. Virtual acceleration with galvanic vestibular stimulation in a virtual reality environment. In IEEE Proceedings. VR 2005. Virtual Reality, 2005., pages 289–290, Washington, DC, USA, March 2005. IEEE.
Y.-H. Peng, C. Yu, S.-H. Liu, C.-W. Wang, P. Taele, N.-H. Yu, and M. Y. Chen. Walkingvibe: Reducing virtual reality sickness and improving realism while walking in vr using unobtrusive head-mounted vibrotactile feedback. In Proceedings of the2020 CHI Conference on Human Factors in Computing Systems, CHI’20, New York, NY, USA, 2020. Association for Computing Machinery.
M. Rank, Z. Shi, and S. Hirche. Perception of delay in haptic telepresence systems. Presence, 19(5):389–399, Oct 2010.
M. Rey, T. Clark, W. Wang, T. Leeder, Y. Bian, and D. Merfeld. Vestibular perceptual thresholds increase above the age of 40. Frontiers in Neurology, 7, 10 2016.
B. E. Riecke, J. Schulte-Pelkum, F. Caniard, and H. H. Bulthoff. Towards lean and elegant self-motion simulation in virtual reality. In IEEE Proceedings. VR 2005.Virtual Reality, 2005., pages 131–138, 2005.
J. Rolfe and K. Staples. Flight Simulation. Cambridge Aerospace Series. Cambridge University Press, 1988.
T. Sasaki, R. S. Hartanto, K.-H. Liu, K. Tsuchiya, A. Hiyama, and M. Inami. Leviopole: Mid-air haptic interactions using multirotor. In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH ’18, pages 12:1–12:2, New York, NY, USA,2018. ACM.
J. Schelter and F. Masi. Theater with seat and wheelchair platform movement, 111998. U.S. Patent 5,829,201 A.
D. Stewart. A platform with six degrees of freedom. 1965.
vMocion. 3v™ platform, 2016.
S. Weech, J. Moon, and N. F. Troje. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLOS ONE, 13(3):1–21, 03 2018.
S. Weech and N. F. Troje. Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation. Multisensory Research, 30(1):65–90,2017.
B. G. Witmer, C. J. Jerome, and M. J. Singer. The factor structure of the presence questionnaire.Presence: Teleoper. Virtual Environ., 14(3):298–312, June 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61350-
dc.description.abstract我們研發了一套名為 HeadBlaster 的創新穿戴式裝置,能對使用者頭部施加不須接地的力回饋以刺激使用者的前庭與本體覺感知系統。相較於傳統移動式平台透過傾斜使用者全身來製造短暫的速度感知,HeadBlaster 能夠利用持續的力回饋,更準確地模擬現實生活中慣性與離心力的感知。由於 HeadBlaster 不須接地且只需作用於頭部,使用者不須被侷限在固定的機械上,在體驗速度感的同時仍可以在空間中自由移動。我們將六顆空氣噴頭安裝於市售虛擬實境頭戴顯示器上,並連接至空氣壓縮機,利用高壓空氣被釋放所產生的反向推進力來製造持續的橫向力回饋。並透過控制四個方向的噴頭開關,製造出平面360度的橫向力。我們進行了數個人因感知實驗來探討頭部受力時的移動量、速度感持續時間與最低可感知的施力大小,並在最後利用兩個虛擬實境應用——一款自製的衝浪遊戲,以及與市售移動平台結合的市售賽車模擬程式——來進一步評測 HeadBlaster 的使用者體驗。實驗結果證實 HeadBlaster 能顯著地提供比傳統移動平台更持久的加速度感知,也能顯著地提升虛擬實境體驗的真實感與沉浸感,並且獲得絕大多數 受測者喜好。另外,我們也證實將 HeadBlaster 與市售移動平台結合能更進一步加強虛擬實境中的使用者體驗。zh_TW
dc.description.abstractWe present HeadBlaster, a novel wearable technology that creates motion perception by applying ungrounded force to the head to stimulate the vestibular and proprioception sensory systems. Compared to motion platforms that tilt the body, HeadBlaster more closely approximates how lateral inertial and centrifugal forces are felt during real motion to provide more persistent motion perception. In addition, because HeadBlaster only actuates the head rather than the entire body, it eliminates the mechanical motion platforms that users must be constrained to, which improves user mobility and enables room-scale VR experiences. We designed a wearable HeadBlaster system with 6 air nozzles integrated into a VR headset, using compressed air jets to provide persistent, lateral propulsion forces. By controlling multiple air jets, it is able to create the perception of lateral acceleration in 360 degrees. We conducted a series of perception and human-factor studies to quantify the head movement, the persistence of perceived acceleration, and the minimal level of detectable forces. We then explored the user experience of HeadBlaster through two VR applications: a custom surfing game, and a commercial driving simulator together with a commercial motion platform. Study results showed that HeadBlaster provided significantly longer perceived duration of acceleration than motion platforms. It also significantly improved realism and immersion, and was preferred by users compared to using VR alone. In addition, it can be used in conjunction with motion platforms to further augment the user experience.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:27Z (GMT). No. of bitstreams: 1
U0001-2906202013385100.pdf: 9924606 bytes, checksum: c4878097db70b44ffc9d17e56823c610 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Related Work 5
2.1 Motion Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Motion Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Air Propulsion-based Haptics . . . . . . . . . . . . . . . . . . . . . . . . 7
3 System Design and Evaluation 9
3.1 Air Nozzles and VR Headset Integration . . . . . . . . . . . . . . . . . . 9
3.2 Pneumatic Control System . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Stable Air Pressure Range . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Air Pressure and Generated Force . . . . . . . . . . . . . . . . . 13
3.3.3 Operating Latency . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.4 Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Motion Perception 15
4.1 Vestibular and Somatosensory Stimulation . . . . . . . . . . . . . . . . . 16
4.2 Duration of Motion Perception . . . . . . . . . . . . . . . . . . . . . . . 18
5 Designing Force Feedback for HeadBlaster 20
5.1 Absolute Detection Threshold (ADT) . . . . . . . . . . . . . . . . . . . 20
5.2 Mapping Virtual Acceleration to Force Output . . . . . . . . . . . . . . . 22
6 User Experience Evaluation 24
6.1 Application: VR Surfing Game . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Application: Commercial Driving Simulator . . . . . . . . . . . . . . . . 28
6.2.1 Integrating HeadBlaster with commercial driving simulator . . . . 28
6.2.2 User study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Discussion and Limitations 32
7.1 Noise Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Device Weight and Form Factor . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Degrees of Freedom and Direction of Forces . . . . . . . . . . . . . . . . 33
7.4 Practicality of Compressed Air Jets . . . . . . . . . . . . . . . . . . . . . 34
7.5 VR Sickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Conclusion 36
Bibliography 37
dc.language.isoen
dc.subject虛擬實境zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject觸覺zh_TW
dc.subject力回饋zh_TW
dc.subject加速度zh_TW
dc.subject氣動zh_TW
dc.subjectForce feedbacken
dc.subjectHapticsen
dc.subjectAir propulsionen
dc.subjectPneumaticsen
dc.subjectWearableen
dc.subjectVirtual Realityen
dc.subjectMotion perceptionen
dc.subjectAccelerationen
dc.title利用氣動推力產生力回饋的頭戴式裝置用以增進使用者在虛擬體驗中的加速度感及沈浸感zh_TW
dc.titleHeadBlaster: A Wearable Approach to Simulating Motion Perception using Head-mounted Air Propulsion Jetsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余能豪(Neng-Hao Yu),鄭龍磻(Lung-Pan Cheng),詹力韋(Liwei Chan),蔡欣叡(Hsin-Ruey Tsai)
dc.subject.keyword觸覺,力回饋,穿戴式裝置,氣動,虛擬實境,加速度,zh_TW
dc.subject.keywordHaptics,Force feedback,Acceleration,Motion perception,Virtual Reality,Wearable,Pneumatics,Air propulsion,en
dc.relation.page41
dc.identifier.doi10.6342/NTU202001185
dc.rights.note有償授權
dc.date.accepted2020-06-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-2906202013385100.pdf
  未授權公開取用
9.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved