Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江茂雄(Mao-Hsiung Chiang)
dc.contributor.authorWei-Hsin Chouen
dc.contributor.author周維新zh_TW
dc.date.accessioned2021-06-16T13:01:18Z-
dc.date.available2018-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citation[1] D. Stewart, 'A platform with six degrees of freedom,' Proceedings of the institution of mechanical engineers, vol. 180, pp. 371-386, 1965.
[2] R. Clavel, 'Delta, a fast robot with parallel geometry,' in Proceedings of the International Symposium on Industrial Robots, 1988, 1988, pp. 91-100.
[3] F. Pierrot, C. Reynaud, and A. Fournier, 'DELTA: a simple and efficient parallel robot,' Robotica, vol. 8, pp. 105-109, 1990.
[4] A. Codourey, 'Dynamic modeling of parallel robots for computed-torque control implementation,' The International Journal of Robotics Research, vol. 17, pp. 1325-1336, 1998.
[5] L.-W. Tsai, G. C. Walsh, and R. E. Stamper, 'Kinematics of a novel three DOF translational platform,' in Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, 1996, pp. 3446-3451.
[6] J. Wang and X.-J. Liu, 'Analysis of a novel cylindrical 3-DoF parallel robot,' Robotics and Autonomous Systems, vol. 42, pp. 31-46, 2003.
[7] V. Lukanin, 'Inverse Kinematics, Forward Kinematics and working space determination of 3DOF parallel manipulator with SPR Joint Structure,' Mechanical Engineering, vol. 49, pp. 39-61, 2005.
[8] D. Chablat and P. Wenger, 'Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide,' Robotics and Automation, IEEE Transactions on, vol. 19, pp. 403-410, 2003.
[9] S. Huda, Y. Takeda, and S. Hanagasaki, 'Kinematic design of 3-URU pure rotational parallel mechanism to perform precise motion within a large workspace,' Meccanica, vol. 46, pp. 89-100, 2011.
[10] H.-S. Choi, C.-S. Han, K.-y. Lee, and S.-h. Lee, 'Development of hybrid robot for construction works with pneumatic actuator,' Automation in Construction, vol. 14, pp. 452-459, 2005.
[11] M.-H. Chiang and H.-T. Lin, 'Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system,' Sensors, vol. 11, pp. 11476-11494, 2011.
[12] H.-T. Lin, 'Design, analysis and path tracking servo control of 3-PUU pneumatic parallel manipulators with a stereo vision measurement system,' Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, 2012.
[13] M.-H. Chiang, H.-T. Lin, and C.-L. Hou, 'Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm,' Sensors, vol. 11, pp. 2257-2281, 2011.
[14] D. Ben-Dov and S. E. Salcudean, 'A force-controlled pneumatic actuator,' Robotics and Automation, IEEE Transactions on, vol. 11, pp. 906-911, 1995.
[15] E. Richer and Y. Hurmuzlu, 'A high performance pneumatic force actuator system: Part I—Nonlinear mathematical model,' Journal of Dynamic Systems, Measurement, and Control, vol. 122, pp. 416-425, 1999.
[16] J. Wang, D. Wang, P. R. Moore, and J. Pu, 'Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems,' IEE Proceedings-Control Theory and Applications, vol. 148, pp. 35-42, 2001.
[17] J. E. Bobrow and B. W. McDonell, 'Adaptive tracking control of an air powered robot actuator,' Journal of dynamic systems, measurement, and control, vol. 115, pp. 427-433, 1993.
[18] J. E. Bobrow and B. W. McDonell, 'Modeling, identification, and control of a pneumatically actuated, force controllable robot,' Robotics and Automation, IEEE Transactions on, vol. 14, pp. 732-742, 1998.
[19] A. Moran, S. Nakadai, and M. Nagai, 'Analysis of computer-controlled pneumatic servo system for robotic applications,' in Intelligent Robots and Systems '90. 'Towards a New Frontier of Applications', Proceedings. IROS '90. IEEE International Workshop on, 1990, pp. 897-902 vol.2.
[20] S. Liu and J. E. Bobrow, 'An analysis of a pneumatic servo system and its application to a computer-controlled robot,' Journal of Dynamic Systems, Measurement, and Control, vol. 110, pp. 228-235, 1988.
[21] T. Noritsugu and M. Takaiwa, 'Robust positioning control of pneumatic servo system with pressure control loop,' in Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, 1995, pp. 2613-2618 vol.3.
[22] H. K. Lee, G. S. Choi, and G. H. Choi, 'A study on tracking position control of pneumatic actuators,' Mechatronics, vol. 12, pp. 813-831, 2002.
[23] B. W. McDonell and J. E. Bobrow, 'Adaptive tracking control of an air powered robot actuator,' Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 427-433, 1993.
[24] K. Tanaka, Y. Yamada, T. Satoh, A. Uchibori, and S. Uchikado, 'Model reference adaptive control with multi-rate type neural network for electro-pneumatic servo system,' in Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on, 1999, pp. 1716-1721 vol. 2.
[25] K. Tanaka, Y. Yamada, A. Shimizu, and S. Shibata, 'Multi-rate adaptive pole-placement control for pneumatic servo system with additive external forces,' in Advanced Motion Control, 1996. AMC '96-MIE. Proceedings., 1996 4th International Workshop on, 1996, pp. 213-218 vol.1.
[26] L. Baoren, L. Zhuangyun, and X. Yaoming, 'Study on adaptive control for a pneumatic position servo system,' Advances in Modelling & Analysis C, vol. 49, pp. 21-28, 1997.
[27] J.-J. E. Slotine and W. Li, Applied Nonlinear Control vol. 199: Prentice hall New Jersey, 1991.
[28] E. Richer and Y. Hurmuzlu, 'A high performance pneumatic force actuator system: Part II—Nonlinear controller design,' Journal of Dynamic Systems, Measurement, and Control, vol. 122, pp. 426-434, 1999.
[29] G. M. Bone and N. Shu, 'Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators,' Mechatronics, IEEE/ASME Transactions on, vol. 12, pp. 557-561, 2007.
[30] A.-C. Haung and K.-K. Liao, 'FAT-based adaptive sliding control for flexible arms: Theory and experiments,' Journal of Sound and Vibration, vol. 298, pp. 194-205, 11/22/ 2006.
[31] M.-H. Chiang, L.-W. Lee, C.-F. Kuo, and Y.-N. Chen, 'A H∞ tracking-based adaptive sliding-mode controller for nonlinear pneumatic path tracking systems via a functional approximation approach,' Journal of the Chinese Society of Mechanical Engineers, vol. 30, pp. 83-94, 2009.
[32] L.-W. Tsai and S. Joshi, 'Kinematics and optimization of a spatial 3-UPU parallel manipulator,' Journal of Mechanical Design, vol. 122, p. 439, 2000.
[33] J.-P. Merlet, Parallel Robots: Springer, 2006.
[34] M. Bouri and R. Clavel, 'The Linear Delta: Developments and Applications,' in Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), 2010, pp. 1-8.
[35] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators: Wiley-Interscience, 1999.
[36] K. J. Waldron and K. H. Hunt, 'Series-parallel dualities in actively coordinated mechanisms,' The International journal of robotics research, vol. 10, pp. 473-480, 1991.
[37] W. Q. D. Do and D. C. H. Yang, 'Inverse dynamic analysis and simulation of a platform type of robot,' Journal of Robotic Systems, vol. 5, pp. 209-227, 1988.
[38] P. Guglielmetti and R. Longchamp, 'A closed form inverse dynamics model of the delta parallel robot,' in 4th IFAC Symp. on Robot Control, Syroco, 1994, pp. 51-56.
[39] K. Miller and R. Clavel, 'The Lagrange-based model of Delta-4 robot dynamics,' Robotersysteme, vol. 8, pp. 49-54, Mar 1992.
[40] G. Lebret, K. Liu, and F. L. Lewis, 'Dynamic analysis and control of a stewart platform manipulator,' Journal of Robotic Systems, vol. 10, pp. 629-655, 1993.
[41] A. Codourey and E. Burdet, 'A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots,' in Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, 1997, pp. 1612-1618 vol.2.
[42] L.-W. Tsai, 'Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work,' Journal of Mechanical Design, vol. 122, pp. 3-9, 1999.
[43] Z. Ji, 'Study of the effect of leg inertia in Stewart platforms,' in Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on, 1993, pp. 121-126 vol.1.
[44] L. Yangmin and X. Qingsong, 'Kinematic analysis and dynamic control of a 3-PUU parallel manipulator for cardiopulmonary resuscitation,' in Advanced Robotics, 2005. ICAR '05. Proceedings., 12th International Conference on, 2005, pp. 344-351.
[45] K. Astrom and T. Hagglund, Advanced PID Control. Research Triangle Park, NC: ISA, 2005.
[46] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control: John Wiley & Sons New York, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61341-
dc.description.abstract本研究旨在針對三軸角錐形氣壓式並聯機構機械臂進行分析及控制,結合並聯機構和氣壓伺服系統之優點,包括高響應、高速度、多自由度及低成本等,本研究發展出一套具有三自由度的氣壓式並聯機構機械臂系統。此機械臂系統在機構設計上,選用無桿式氣壓缸作為致動器,採用封閉鏈設計方式,搭配平行連桿組件與球狀關節,進行機台設計與組裝,並且在空間規劃上將三軸氣壓缸致動器排列成一角錐形式之幾何結構以換取較大的工作空間。
系統分析上分為兩部分。第一部份為並聯機構機械臂之運動學分析,此部分採用幾何向量方法,利用空間中向量迴圈的封閉性質建立出致動器與運動平台端點間之逆向及順向運動關係,推導逆向與順向運動學之解析解,並藉此進一步推導出機械臂的Jacobian矩陣,得到致動器與運動平台間的速度關係,再透過Matlab數值分析軟體,進行逆向與順向運動學模擬,驗證所推得的運動學模型之正確性。第二部分為系統的動態分析,此部分包括了氣壓伺服系統的數學模型推導以及並聯機構機械臂之動態模型建立,其中在機械臂動態模型建立上採用動力學的虛功原理進行動態推導,並利用Simulink軟體進行機械臂系統模型的動態模擬。
控制器設計方面,本研究針對單軸氣壓伺服系統採用雙迴圈回授控制策略,將氣壓缸位置及內部壓差做為回授信號進行氣壓缸致動器的位置追蹤控制。針對三軸並聯機構機械臂,本研究將所推得的機械臂動態納入控制器設計,採用逆向動力學控制方法進行三軸非線性動態解耦合,再結合單軸控制系統中使用的內迴圈壓力控制,實現三軸氣壓並聯機構機械臂的運動控制,並使用Simulink軟體進行控制系統模擬。
最後,本文建立即時控制實驗,整合並聯機構機械臂系統、量測與資料擷取系統以及控制演算法進行單軸氣壓伺服系統軌跡追蹤控制實驗,接著藉由運動學模型規劃機械臂端點平台三維空間軌跡,進行端點平台軌跡追蹤控制實驗,驗證其控制性能,效果及可行性。實驗結果顯示此控制策略可成功應用於三軸氣壓並聯機構機械臂之運動控制,並且實現端點平台的軌跡定位。
zh_TW
dc.description.abstractThis study aims to investigate the analysis and control of a novel three-axial parallel manipulator driven by the pneumatic servo system. The proposed parallel manipulator is composed of a fixed base frame, a moving platform and three sets of parallel kinematic chains. In addition, three identical pneumatic rodless cylinders are employed to be the linear actuators of the manipulator. The assembly configuration of the cylinder actuators makes the manipulator in a pyramidal structure, which can offer more working space to the manipulator. Moreover, from the mobility analysis of the parallel mechanism, the manipulator is verified to possess three translational degrees of freedom.
In this study, the analysis of the system contains two major parts: kinematic analysis and dynamic analysis. In the kinematic analysis, the geometric method is introduced to solve the kinematic relation between the actuated joints and the moving platform. A vector-loop closure equation is first established for each limb of the manipulator, and then the solutions for both the inverse and forward kinematics are obtained by solving the vector-loop equations. Furthermore, the velocity relation between the actuators and the moving platform are also considered and obtained by deriving the manipulator Jacobian matrix. In the dynamic analysis, the actuator dynamics is first derived by introducing the mathematical model of the pneumatic cylinder system. Then, the dynamic model of the parallel manipulator is derived using principle of virtual work.
In this study, the controller design of the single-axial pneumatic cylinder system is first introduced. The proposed control design applies a dual-loop feedback control scheme with an inner pressure control loop and an outer position control loop using the pressure difference feedback and the position feedback. For the control of three-axial manipulator, the proposed scheme takes the manipulator dynamics into consideration and uses the inverse dynamics control approach to decouple the nonlinear manipulator system. The inverse dynamics control are then combined with the inner pressure control loop for each pneumatic cylinder and implemented in the overall control system to realize the motion control for the overall manipulator system.
Numerical simulations are carried out to verify the correctness and effectiveness of the derived kinematic and dynamic models as well as the proposed control schemes using Matlab/Simulink software. Finally, the real-time experiments for the path tracking control of the single-axial pneumatic cylinder system and of the three-axial manipulator end-effector are setup and conducted to exhibit the control performance and accuracy of the proposed control design in the actual system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:18Z (GMT). No. of bitstreams: 1
ntu-102-R00525052-1.pdf: 2371070 bytes, checksum: 4ea794c7de562c25aba3226201d34a94 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xvii
NOMENCLATURE xviii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 3
1.2.1 Parallel Manipulator 3
1.2.2 Pneumatic Servo System 4
1.3 Motivation 6
1.4 Thesis Outline 7
Chapter 2 System Overview 8
2.1 Mechanism Description 8
2.2 Manipulator Mobility 12
2.3 Test Rig Layout 14
2.3.1 Pneumatic Servo Positioning System 14
2.3.2 Overall Manipulator System 16
Chapter 3 Analysis of Kinematics 19
3.1 Geometry of the Manipulator 20
3.2 Inverse Kinematic Analysis 24
3.3 Forward Kinematic Analysis 25
3.4 Jacobian Analysis 28
Chapter 4 Analysis of Dynamics 32
4.1 Dynamic Modeling of the Pneumatic Servo System 32
4.1.1 Dynamic Model of the Pneumatic Servo Valve 33
4.1.2 Dynamic Model of the Pneumatic Cylinder 36
4.2 Dynamic Modeling of the Manipulator 41
Chapter 5 Controller Design 46
5.1 Controller Design of the Single-Axial Pneumatic Servo System 46
5.2 Controller Design of the Three-Axial Pneumatic Parallel Manipulator System 51
5.2.1 Inverse Dynamics Control 51
5.2.2 Outer Loop Control Design 53
5.2.3 Overall Control System 55
Chapter 6 Simulations and Discussions 56
6.1 Simulations of Inverse and Forward Kinematics 57
6.1.1 Simulation of Circular Trajectory 59
6.1.2 Simulation of Spherical Trajectory 64
6.1.3 Simulation of Three-Dimensional Line Trajectory 69
6.2 Simulation of Manipulator Dynamics 74
6.3 Simulations for Single-Axial Pneumatic Servo System 79
6.3.1 Open-loop Simulations for Single-Axial Pneumatic Servo System 81
6.3.2 Closed-loop Simulations for Single-Axial Pneumatic Servo System 85
Chapter 7 Experiments and Discussions 96
7.1 Experiments of Single-Axial Pneumatic Cylinder System 98
7.1.1 Experimental Results of Inner-loop Pressure Control 98
7.1.2 Experimental Results of Path Tracking Control for a Fifth Order Trajectory 105
7.1.3 Experimental Results of Path Tracking Control for a Sinusoidal Trajectory 112
7.2 Experiments of Three-Axial Pneumatic Parallel Manipulator 119
7.2.1 Experimental Results of Path Tracking Control of End-Effector for a Circular Trajectory 120
7.2.2 Experimental Results of Path Tracking Control of End-Effector for a Spherical Trajectory 126
7.2.3 Experimental Results of Path Tracking Control of End-Effector for a Square Loop Trajectory 132
Chapter 8 Conclusions 138
REFERENCES 141
dc.language.isoen
dc.subjectJacobian矩陣zh_TW
dc.subject軌跡追蹤控制zh_TW
dc.subject氣壓伺服系統zh_TW
dc.subject逆動力學控制zh_TW
dc.subject並聯機構zh_TW
dc.subject運動學分析zh_TW
dc.subject虛功原理zh_TW
dc.subjectpath tracking controlen
dc.subjectpneumatic servo systemen
dc.subjectkinematic analysisen
dc.subjectJacobian matrixen
dc.subjectprinciple of virtual worken
dc.subjectinverse dynamics controlen
dc.subjectparallel manipulatoren
dc.title三軸角錐形氣壓式並聯機構機械臂分析及控制之研究zh_TW
dc.titleAnalysis and Control of a Three-Axial Pyramidal Pneumatic Parallel Manipulatoren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭振華,任志強,林靖國,鍾清枝
dc.subject.keyword並聯機構,氣壓伺服系統,運動學分析,Jacobian矩陣,虛功原理,逆動力學控制,軌跡追蹤控制,zh_TW
dc.subject.keywordparallel manipulator,pneumatic servo system,kinematic analysis,Jacobian matrix,principle of virtual work,inverse dynamics control,path tracking control,en
dc.relation.page143
dc.rights.note有償授權
dc.date.accepted2013-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved