Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋聖榮(Sheng-Rong Song)
dc.contributor.authorWei-Kuo Linen
dc.contributor.author林瑋幗zh_TW
dc.date.accessioned2021-06-16T13:01:16Z-
dc.date.available2018-08-16
dc.date.copyright2013-08-16
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citation李海兵、楊經綏、許至琴、孫知明、P. Tapponnier, 2006,阿爾金斷裂帶隊青藏高原北部生長、隆升的制約。地學前緣,第13卷,第4期,第59-79頁。
張利云、丁林、楊迪、許強、蔡福龍、劉德亮,2012,藏北中中新世淡色花崗岩及流紋岩的成因:對高原北部邊界地殼家後過程和隆升時代的制約。科學通報,第57卷,第2-3 期,第 153-168頁。
許建東、趙波、張柳毅、陳正全,2011,新疆阿什庫勒火山群野外地質科學考察。地震地質,第33卷,第3期。
常麗華、陳曼云、金巍、李世超、于介江,2006,透明礦物薄片鑑定手冊。236頁,北京,地質出版社。
潘家偉,2011,西崑崙構造地貌與阿什庫勒地區活動構造研究。博士論文。中國地質科學院。
寧維坤、遲效國、劉建峰、趙芝、李才,2009,青藏高原北部黑石北湖新生代鉀質火山岩的成因。地質通報,第28卷,第9期,第1355-1360頁。
趙銘鈺,1976,新疆昆侖山第四紀火山群及阿什庫勒活火山介紹。新疆地質,1-2;27-36。
賴紹聰,1999,青藏高原北部新生代火山岩的成因機制。岩石學報,第15卷,第1期,第98-104頁。
羅照華、莫宣學、蘇尚國、鄧晉福、曹永清、張文會,2001,青藏高原北源的性質與新生代幔源岩漿活動。中國科學,D輯,第8-13頁。

Reference
Arnaud, N. O., P. Vidal, P. Tapponnier, P. Matte, and W. M. Deng, 1992, The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implication, Earth and Planetary Science Letters, 111, 351-367.
Brooks, C., Hart, S. R. and Wendt, I., 1972, Realistic use of two-error regression treatments as applied to Rubidium-Strontium data. Reviews of Geophysics and Space Physics, 10, 551-577.
Burg J.P. and Gerya T.V., 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorphic Geol., 23, 75-95.
Cooper, K. M., Reid, M. R., Dunbar, N. W. and Mcintosh, 2002, Origin of mafic magmas beneath northwestern Tibet: Constraints from 230Th-238U disequilibria. Geochemistry Geophysics Geosystems, v. 3.
Chung, S. L., Chu, M. F., et al., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68, 173–196.
Dallmeyer, R., and Lecorche, J., 1990, 40Ar/39Ar polyorogenic mineral age record in the northern Mauritanide orogen, West Africa: Tectonophysics, v. 177, p. 81-107.
England, P., and P. Molnar, The interpretation of inverted metamorphic isograds using simple physical calculations, Tectonics, 12, 145-157, 1993.
Foland, K., Gilbert, L., Sebring, C. and Jiang-Feng, C., 1986, 40Ar/39Ar ages for plutons of the Monteregian Hills, Quebec: Evidence for a single episode of Cretaceous magmatism: Bulletin of the Geological Society of America, v. 97, p. 966-974.

Fleck, R. J., Sutter, J. F. and Elliot, D. H., 1977, Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim. Cosmochim. Acta, 41, 15-32.
Goldstein, S. L., O’Nions, R. K. and Hamiltion, P. J., 1984, A Sm-Nd study of atmospheric dusts and particulates from major river system, Earth Planet Science Letters, 70, 221-236.
Hacker, B.R., Gnos, E., Ratschbacher, L., Grove, M., McWilliams, M., Sobolev, S.V., Jiang,W., Wu, Z., 2000. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–2466.
Harrison, T.M., Lovera, O.M., Grove, M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology 25, 899 – 902
Huang, W.C., Ni, J.F., Tilmann, F., Nelson, D., Guo, J., Zhao, W., Mechie, J., Kind, R., Saul, J.,Rapine, R., Hearn, T.M., 2000. Seismic polarization anisotropy beneath the central Tibetan plateau. Journal of Geophysical Research 105, 27979–27989
La Fleche M.R., Camire G., Jenner G.A., 1998, Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chem Geol 148:115–136.
Lanphere, M. A. and Dalrymple, G. B., 1978, The use of 40Ar/39Ar data in evaluation of disturbed K-Ar system. U.S. Geological Survey Open-file Report, 78-701, 241-243.
Leloup P.H., Y. Richard, J. Battaglia and R. Lacassin, 1999, Shear heating in continental strike-slip shear zone: model and field example. Geophysical Journal International, v. 136, Issue 1, p. 19-40

Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N. and Vidal, P.,1987, Crustal generation of Himalayan leucogranites. Tectonophysics, 134: 39-57.
Le Maitre,R.W., Betaman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen,H., Streckeisen,A., Woolllry, A.R., and Zanettin, B., 1989, A classification of igneous rocks ang glossary of terms. Blackwell, Oxford.
Li, X. H., 1997, Geochemistry of the Longsheng Ophiolite from the southern marfin of Yangtze Craton, SE China. Geochemical Journal, 31, 323-337.
Liu, J. and Maimaiti,Y., 1989, Distribution and ages of Ashikule volcanoes on the West Kunlun Mountains, West China. Bulletin of Glacier Research, 7, 187-190.
Lo, C. and Lee, C., 1994, 40Ar/39Ar method of K-Ar age determination of geological samples using Tsing-Hua Open-Pool Reactor (THOR): Journal of the geological Society of China, v.37, p. 143-164.
Lo, C., Wang, P., Yang, H., Liou, Y. and Tsou, T., 2001, The laser 40Ar-39Ar dating microprobe of National Taiwan University: Western Pacific Earth Sciences, v.1, p. 143-156.
McKenna, L. W. and Walker, J. D., 1990, Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet and their implications for the formation of the Tibetan plateau. Journal of geophysical research, Journal of Geophysical Research, v. 95, p. 21,483–21,502.
McNamara, D.E., Owens, T.J., Walter, W.R., 1995. Observations of regional phase propagation across the Tibetan plateau. Journal of Geophysical Research 100, 2215–22229

Nabelek, P.I., Liu, M. and Sirbescu M. L., 2001, Thermo-rheological, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson Orogeny, Black Hills, South Dakota, Tectonophysics, 342, 371 – 388.
Nabelek, P. I., and Liu, M., 2004, Petrologic and thermal constraints on the origin of leucogranites in collisional orogens, Trans. R. Soc. Edinburgh: Earth Sci., 95, 73 – 85.
Nabelek, P.I., Whittington, A.G. and Hofmeister, A.M. 2010, Strain heating as a mechanism for partial melting andultrahigh temperature metamorphism in convergent orogens: Implications of temperature - dependent thermal diffusivity andrheology, J. Geophys. Res., 115, B12417.
Pearce J.A., Harris N.B., Tindle A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983
Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, v. 58, p. 63-81.
Phillps, D. and Onstott, T. C., 1988. Argon isotopic zoning in mantle phlogopite. Geology, 16, 542-546.
Pinet, C., Jaupart, C., 1987. A thermal model for the distribution in space and time of the Himalayan granites. Earth and Planetary Science Letters 84, 87±99.
Raczek, I., Jochum, K. P. and Hofmann, A. W., 2003, Neodymium and Strontium Isotope Data for USGS Reference Materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and Eight MPI-DING Reference Glasses. Geostandards Newsletter, 27: 173–179.
Roddick, J. C., Cliff, R. A. and Rex, D. C., 1980. The evolution of excess argon in Alpine biotites: A 40Ar/39Ar analysis. Earth Planet Science Letters, 48, 185-208.
Ron H. Vernon, 2004. A practical guide to rock microstructure, 594, Cambridge University Press.
Shand, S.J., 1951. Eruptive Rocks: Their Genesis, Composition, Classification, and their Relation to Ore-Deposits, with a Chapter on Meteorites. Wiley, New York, 788 pp.
Steiger, R. and Jager, E., 1977, Subcommision on geochronology: convention on the use of decay constants in geochronology and cosmochronology: Earth and Planetary Science Letters, v. 36, p.359-362.
Snee, L. W., Sutter, J. F. and Kelly, W. C., 1988, Thermochronology of economic mineral deposites: Dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40Ar/ 39Ar age spectrum techniques on muscovite. Econ. Geol., 83, 335-354.
Sun, S.-S.& McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. Eds., Magmatism in Ocean Basins. Geol. Soc. Spec. Publ., London, pp. 313–345.
Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geol. Soc. London, pp. 115–157.
Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J.S., 2001, Oblique stepwise rise and growth of the Tibet plateau: Science, v. 294, p. 1671-1677.
Tilmann, F., Ni, J., and INDEPTH III Seismic Team, 2003, Seismic imaging of the downwelling Indian lithosphere beneath central Tibet: Science, v. 300, p. 1424–1427.
Turner, S., C. Hawkesworth, J. Liu, N. Rogers, S. Kelley, and P. van Calsteren, 1993, Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364, 50-54.
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., van Calsteren, P., and Deng, W., 1996, Postcollision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts: Journal of Petrology, v. 37,p. 45–71.
Wang, Q., Chung, S.L., Li, X.H., Wyman, D., Li, Z.X., Sun, W.D., Qiu, H.N., Liu, Y.S., and Zhu, Y.T., 2012, Crustal melting and flow beneath northern Tibet: Evidence from mid-Miocene to Quaternary strongly peraluminous rhyolites in southern Kunlun Range: Journal of Petrology, v. 53, p. 2523–2566.
Whittington, A. G., Hofmeister, A.M. and P.I. Nabelek, 2009, Temperature-dependent thermal diffusivity of Earth’ s crust and implications for magmatism, Nature, 458, 319 – 321.
Wittlinger, G., Tapponnier, P., Poupinet, G., Mei, J., Danian, S., Herquel, G. and Masson, F. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault, Science, 282, 74-76, 1998.
Wood, D.A., Joron, J.L. and Treuil, M., 1979, A re-appraisal of the use of traceelements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 45, 326–336.
Linqi Xia, Xiangmin Li, Zhongping Ma, Xueyi Xu, Zuchun Xia, 2011, Cenozoic volcanism and tectonic evolution of the Tibetan plateau, Gondwana Research, Volume 19, Issue 4, Pages 850-866.

Xu, Y., F. Liu, J. Liu, and H. Chen, Crust and upper mantle structure beneath western China from P wave travel time tomography, J. Geophys. Res., 107(B10), 2220.
YinA., A., HarrisonT.M., T.M., 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Science 28, 211–280
Zhang Z., Xioa X., Wang J., Wang Y. and Luo Z., 2004. Geochemistry of the Cenozoic Potassic rocks in the west Kunlun Mountains and constraints in their sources. Acta Geologica Sinica, 78, 912-920.
Zhang Z., Xioa X., Wang J., Wang Y. and Kusky T.M, 2008, Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis. Journal of Asian Earth Sciences 31, 379–403
Zhou, H.W., Murphy, M.A., 2005. Tomographic evidence for wholesale Underthrusting of India beneath the entire Tibetan plateau. Journal of Asian Earth Science 25, 445–457.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61338-
dc.description.abstract阿什庫勒盆地位於青藏高原西北緣的西昆侖中,松潘-甘孜地體之上,坐落在阿爾金斷層與其分支康西瓦斷層之交匯處。阿爾金斷層為一條長約兩千公里的大型走向滑移斷層,橫越青藏高原之西北緣。前人認為阿什庫勒盆地是阿爾金斷層在印度板塊碰撞時,受到向北移動的帕米爾地塊折彎而形成的拉分盆地。在盆地內分布了許多年輕火山,其中最近一次的噴發活動曾被當地報紙記載。
阿什庫勒盆地之新生代火山岩具有高鉀的特徵,其二氧化矽含量變化大,自基性至酸性都有。根據其微量元素與鍶釹同位素之特徵,將之分為基性至中性、中酸性和酸性三組火山岩。基性至中性火山岩之不相容元素分布與其他西昆侖地區新生代火山岩相近,具有明顯Ta-Nb-Ti虧損的特徵,並且具有高鍶同位素比值與低釹同位素值之特徵,顯示其來自於富化的源區。前人認為這些火山岩可能來自於受到前期隱沒作用時交代變質作用而富化的岩石圈地函。而酸性火山岩卻不具有如基性至中性火山岩中Ta-Nb-Ti虧損的特徵,且有較高的鍶同位素比值。這樣的差異無法以結晶分化等作用解釋,因此認為可能是源區本身的性質造成的差異。岩象學觀察中,其含有許多具有如圓蝕外型與峽灣構造等重融構造的石英,指示其源區應富含石英,因此認為阿什庫勒酸性火山岩之源區應為長英質的地殼。中酸性火山岩因具有Ta-Nb-Ti虧損的特徵,所以可能是基性至中性火山岩更進一步結晶分化的結果,且可能受到地殼混染或岩漿混合的作用影響,使之具有介於前述兩者之間的性質。根據前人鉀氬定年和本研究之氬氬定年結果,阿什庫勒火山岩之噴發年代皆為第四紀。除此之外,殼源與函源之火山岩年代上並無明顯差異,應為同時期形成。
歸結出可能造成阿什庫勒之地殼與地函同時發生部分熔融的機制,包含軟流圈上湧和大型走向滑移斷層之剪切生熱等兩種機制。相較於青藏高原中北部,阿什庫勒盆地所在之西昆侖地區其地質環境並不相同。根據前人地球物理資料顯示,此區深部沒有明顯軟流圈上湧的情形,且可能是印度板塊低角度的下插,因此認為軟流圈上湧的機制無法解釋阿什庫勒地區火山的成因。在前人模擬結果中顯示大型走向滑移斷層中,剪切生熱的結果可以造成同時地殼和地函溫度的升高而發生部分熔融。近期研究也顯示隨著溫度升高,岩石散熱的能力會明顯下降,因此由斷層剪切產生的熱能夠累積而達固熔溫度,進而發生部分熔融。由於阿什庫勒盆地為阿爾金斷層之拉分盆地,受到阿爾金斷層的影響甚大,因此本研究認為阿什庫勒盆地中新生代火山岩之成因,可能是受到阿爾金斷層剪切生熱作用的結果。
zh_TW
dc.description.abstractAshikule Basin, a pull-apart basin, is located in the West Kunlun where is on the Sonpan-Ganze terrane in geology and bounds the northwest margin of Tibetan plateau. It sits on the junction of Altyn Tagh Fault and Karakax fault. The Altyn Tagh fault is a large continental strike-slip fault extended about 2000 km and bounds the north margin of Tibetan plateau. There are tens of volumetrically limited volcanoes in the basin. The volcanoes in the Ashikule basin are one of the youngest one on the plateau, the latest eruption was reported by the Xinjiang newspaper at 1951.
The Cenozoic volcanic rocks in the Ashikule basin are potassium rich with wide range of SiO2 contents. According to their concentrations of trace elements and Sr-Nd isotopic characteristics, they are divided into three groups: the basic, intermediate and silicic. The basic group shows Ta-Nb-Ti depletion with high 87Sr/86Sr and lowεNd. These characteristics are similar to other mafic volcanic rocks occurred in the West Kunlun, and were thought to be originated from the metasomatized lithospheric mantle. On the other hand, the silicic group does not show Ta-Nb-Ti depletion, and has higher 87Sr/86Sr value. They are thought to be originated from the felsic upper crust because fractionation from the basic group cannot explain these differences. Meanwhile, they contain abundant quartz with re-melting structure which suggests these silicic rocks are from a quartz-rich source region. The intermediate group is fractionated from the basic group and possibly contaminated by crust or mixed with crustal-origin melts. According to the K-Ar dating from previous research and the Ar-Ar dating in this study, the ages of both crustal- and mantle-origin melts are coeval.
Heating from upwelled asthenosphere and shearing of Altyn Tagh fault are two possible mechanisms to generate both mantle- and crustal-derived melts. Unlike the scenario in northern central Tibet, geophysical data do not suggest that there are hot mantle beneath the Ashikule basin. Meanwhile, the subducted India plate possibly prevents the heating from the asthenosphere. Simulated work on shear heating suggests that it is possible to induce both crustal- and mantle-origin melts by shearing of continental strike-slip fault. Recent researches suggest the conductivity is low in high temperature, so the heat can accumulate and cause partial melting at the long-lived shear zone. Ashikule basin is a pull-apart basin of Altyn Tagh fault and is highly influenced by the fault; therefore, shear heating is the most possible melting mechanism for the Ashikule volcanism in terms of our new data.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:16Z (GMT). No. of bitstreams: 1
ntu-102-R00224213-1.pdf: 11674955 bytes, checksum: 3fb9ddcd136a0732158038e2c5db3a63 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝-------------------------------------------I
中文摘要----------------------------------------II
英文摘要----------------------------------------IV
目錄-------------------------------------------VI
表目-------------------------------------------VIII
圖目-------------------------------------------IX
第一章、 緒論-----------------------------------1
1.1 前言-----------------------------------1
1.2 研究區域--------------------------------1
1.3 前人研究--------------------------------7
1.4 青藏高原新生代火山岩----------------------8
1.4.1 西昆侖新生代火山岩------------------------9
1.4.2 阿什庫勒火山岩---------------------------11
1.5 研究動機與目的---------------------------13
第二章、 研究方法--------------------------------14
2.1 樣品位置------------------------------------14
2.2岩象觀察-------------------------------------15
2.3主量及微量元素分析-----------------------------15
2.3.1主量元素分析------------------------15
2.3.2 微量元素分析-------------------------------15
2.4鍶釹同位素分析---------------------------------16
2.5氬氬同位素定年法-------------------------------17
2.5.1氬氬同位素定年法之理論------------------------17
2.5.2氬氬同位素定年法之步驟------------------------18
第三章、 分析結果---------------------------------21
3.1 岩象學觀察結果--------------------------------21
3.2 主量元素含量分析結果---------------------------26
3.3 微量元素含量分析結果---------------------------36
3.4 鍶釹同位素分析結果-----------------------------52
3.5 氬氬同位素定年結果-----------------------------54
第四章、 阿什庫勒新生代火山岩之岩石成因---------------60
4.1 岩漿源區討論----------------------------------60
4.1.1 基性至中性火山岩-----------------------------61
4.1.2 酸性火山岩----------------------------------65
4.1.3中酸性火山岩----------------------------------70
4.2 阿什庫勒火山岩之時空分佈-------------------------72
4.3 熱源機制討論-----------------------------------74
4.3.1 地殼之熱源機制討論----------------------------74
4.3.2 地殼與地函之熱源機制討論-----------------------75
4.3.2.1軟流圈上湧----------------------------------75
4.3.2.2剪切生熱-----------------------------------80
第五章、 結論-------------------------------------85
參考文獻------------------------------------------i
dc.language.isozh-TW
dc.subject青藏高原zh_TW
dc.subject剪切生熱zh_TW
dc.subject西崑崙zh_TW
dc.subject阿爾金斷層zh_TW
dc.subjectAltyn Tagh Faulten
dc.subjectWest Kunlunen
dc.subjectTibetan Plateauen
dc.subjectshear heatingen
dc.title中國新疆阿什庫勒盆地新生代火山岩之地球化學與岩石成因zh_TW
dc.titleGeochemistry and Petrogenesis of Cenozoic Volcanic Rocks in the Ashikule Basin of Xinjing, Chinaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李海兵(HaiBing Li),曹恕中(Shuh-Jong Tsao),王國龍(Kuo-Lung Wang)
dc.subject.keyword阿爾金斷層,西崑崙,青藏高原,剪切生熱,zh_TW
dc.subject.keywordAltyn Tagh Fault,West Kunlun,Tibetan Plateau,shear heating,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2013-08-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
11.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved