Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61326
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖洺漢(Ming-Han Liao)
dc.contributor.authorLi-Cheng Changen
dc.contributor.author張立成zh_TW
dc.date.accessioned2021-06-16T13:01:06Z-
dc.date.available2018-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citation[1] E. Pop, “Energy Dissipation and Transport in Nanoscale Devices,” Nano Res., 3, 147 (2010).
[2] T.-J. K. Liu, “Bulk CMOS Scaling to the End of the Roadmap,” in VLSI Symp. Tech. Dig., short course, 2 (2012).
[3] R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” in Compound Semiconductor Integrated Circuit Symp., 17 (2005).
[4] M. J. Rodwell, U. Singisetti, M. Wistey, G. J. Burek, A. Carter, A. Baraskar, J. Law, B. J. Thibeault, E. J. Kim, B. Shin, Y.-J. Lee, S. Steiger, S. Lee, H. Ryu, Y. Tan, G. Hegde, L. Wang, E. Chagarov, A. C. Gossard, W. Frensley, A. Kummel, C. Palmstrom, P. C. McIntyre, T. Boykin, G. Klimek, and P. Asbeck, “III-V MOSFETs: Scaling laws, scaling limits, fabrication process,” in Proc. Int. Conf. IPRM, 25 (2010).
[5] J. A. del Alamo, “Nanometer-scale electronics with III–V compound semiconductors,” Nature, 479, 317 (2011).
[6] G. Dewey, B. Chu-Kung, R. Kotlyar, M. Metz, N. Mukherjee, and M. Radosavljevic, “III-V Field Effect Transistors for Future Ultra-Low Power Applications,” in VLSI Symp. Tech. Dig., 45 (2012).
[7] S. Oktyabrsky and P. D. Ye, Fundamentals of III-V Semiconductor MOSFETs. Springer, 2009.
[8] S. Sze, Physics of Semiconductor Devices. John Wiley and Sons, 2005.
[9] C. Jeong, D. A. Antoniadis, and M. S. Lundstrom, “On backscattering and mobility in nanoscale silicon MOSFETs,” IEEE Trans. Electron Dev., 56, 2762 (2009).
[10] D. H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, “Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs,” in IEDM Tech. Dig., 861 (2009).
[11] J. Wang and M. Lundstrom, “Ballistic transport in high electron mobility transistors,” IEEE Trans. Electron Dev., 50, 1604 (2003).
[12] L. Czornomaz, N. Daix1, D. Caimi, M, Sousa, R. Erni, M. D. Rossell, M. El-Kazzi, C. Rossel, C. Marchiori, E. Uccelli, M. Richter, H. Siegwart and J. Fompeyrine, “An Integration Path for Gate-first UTB III-V-on-insulator MOSFETs with Silicon, using Direct Wafer Bonding and Donor Wafer Recycling,” in IEDM Tech. Dig., 517 (2012).
[13] J. J. Gu, X. W. Wang, J. Shao, A. T. Neal, M. J. Manfra, R. G. Gordon, and P. D. Ye, “III-V Gate-all-around Nanowire MOSFET Process Technology: From 3D to 4D,” in IEDM Tech. Dig., 529 (2012)
[14] J. J. Gu, X. W. Wang, H. Wu, J. Shao, A. T. Neal, M. J. Manfra, R. G. Gordon, and P. D. Ye, “20-80nm Channel Length InGaAs Gate-all-around Nanowire MOSFETs with EOT=1.2nm and Lowest SS=63mV/dec,” in IEDM Tech. Dig., 633 (2012).
[15] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, “Unified defect model and beyond,” J. Vac. Sci. Technol., 17, 1019 (1980).
[16] P. D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Lett., 24, 209 (2003).
[17] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., 86, 152904 (2005).
[18] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III–V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., 87, 252104 (2005).
[19] Y. Urabe, N. Miyata, H. Ishii, T. Itatani, T. Maeda, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Yokoyama, N. Taoka, M. Takenaka, and S. Takagi, “Correlation between Channel Mobility Improvements and Negative Vth Shifts in III-V MISFETs: Dipole Fluctuation as New Scattering Mechanism,” in IEDM Tech. Dig., 142 (2010).
[20] A. Kapila and V. Malhotra, “Surface passivation of III-V compound semiconductors,” in Optoelectronic and Microelectronic Materials and Devices Proc., 275 (1996).
[21] D. Kim, T. Krishnamohan, Y. Nishi, K. C. Saraswat, “Band to Band Tunneling limited Off state Current in Ultra-thin Body Double Gate FETs with High Mobility Materials : III-V, Ge and strained Si/Ge,” in Simulation of Semiconductor Processes and Devices, 389 (2006).
[22] M. Passlack, “OFF-State Current Limits of Narrow Bandgap MOSFETs,” IEEE Trans. Electron Dev., 53, 2773 (2006).
[23] K. L. Nummila, Short-channel Effects in III-V Compound Semiconductor Field-effect Transistors, University of Illinois at Urbana-Champaign, 1993.
[24] H. Tsuchiya, A. Masenaka, T. Mori, and Y. Azuma, “Role of Carrier Transport in Source and Drain Electrodes of High-Mobility MOSFETs,” IEEE Electron Device Lett., 31, 365 (2010).
[25] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, 1st ed. Cambridge University Press, 1998.
[26] C. Hu, Modern Semiconductor Devices for Integrated Circuits, 1st ed. Prentice Hall, 2009.
[27] P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, and L. Selmi, “Understanding quasi-ballistic transport in nano-MOSFETs: part I-scattering in the channel and in the drain,” IEEE Trans. Electron Dev., 52, 2727 (2005).
[28] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. on Electron Dev., 51, 1790 (2004).
[29] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. on Electron Dev., 47, 2320 (2000).
[30] M. J. H. van Dal, N. Collaert, G. Doornbos, G. Vellianitis, G. Curatola, B. J. Pawlak, R. Duffy, C. Jonville, B. Degroote, E. Altamirano, E. Kunnen, M. Demand, S. Beckxa, T. Vandeweyera, C. Delvauxa, F. Leysa, A. Hikavyya, R. Rooyackersa, M. Kaiserb, R. G. R. Weemaesb, S. Biesemansa, M. Jurczaka, K. Anila, L. Wittersa and R. J. P. Lander, ”Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography,” in VLSI Symp. Tech. Dig., 110 (2007).
[31] N. Singh, W. W. Fang, S. C. Rustagi, K. D. Budharaju, Selin H. G. Teo, S. Mohanraj, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, “Observation of Metal-Layer Stress on Si Nanowires in Gate-All-Around High-κ/Metal-Gate Device Structures,” IEEE Electron Device Lett., 28, 558 (2007).
[32] P. Singh, N. Singh, J. Miao, W.-T. Park, and D.-L. Kwong, “Gate-All-Around Junctionless Nanowire MOSFET With Improved Low-Frequency Noise Behavior, “ IEEE Electron Device Lett., 32, 1752 (2001).
[33] L. Xia, J. B. Boos, B. R. Bennett, M. G. Ancona, and J. A. del Alamo1, “Hole mobility enhancement in In0.41Ga0.59Sb quantum-well field-effect transistors, “Appl. Phys. Lett., 98, 053505 (2011).
[34] R. A. Minamisawa, M. Schmidt, L. Knoll, D. Buca, Q. T. Zhao, J. M. Hartmann, K. K. Bourdelle, and S. Mantl, “Hole Transport in Strained Si0.5Ge0.5 QW-MOSFETs With <110> and <100> Channel Orientations,” IEEE Electron Device Lett., 33, 1105 (2012).
[35] M. Bohr, “The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era,” in IEDM Tech. Dig., 1 (2011).
[36] W.E Spicer, I. Lindau, P.R. Skeath and C.Y. Su, “The Unified Model for Schottky Barrier Formation and MOS Interface States in 3–5 Compounds,” Appl. Surf. Sci., 9, 83 (1981).
[37] D. K. Schroder, Semiconductor material and device characterization, 3rd ed., Wiley, 2006.
[38] H. Murrmann and D. Windmann, “Current Crowding on Metal Contacts to Planar Devices,” IEEE Trans. on Electron Dev., 16, 1022 (1969).
[39] H. H. Berger, “Model for Contacts to Planar Devices,” Solid-State Electron., 15, 145 (1972).
[40] C. Chang, Y. Fang, and S. Sze, “Specific contact resistance of metal-semiconductor barriers,” Solid-State Electron., 14, 541 (1971).
[41] K. K. Ng and R. Liu, “On the calculation of specific contact resistivity on (100) Si,” IEEE Trans. Electron Dev., 37, 1535 (1990).
[42] International Technology Roadmap for Semiconductors. [Online]. Available: http://www.itrs.net
[43] Y. Tian, R. Huang, X. Zhang, and Y. Wang, “A Novel Nanoscaled Device Concept: Quasi-SOI MOSFET to Eliminate the Potential Weaknesses of UTB SOI MOSFET,” IEEE Trans. Electron Dev., 52, 567 (2005).
[44] M. A. S. de Saouza, C. Claeys, R.T. Doria, M.A. Pavanello, and E. Simoen, “Uniaxial Mechanical Stress Influence on the Low Frequency Noise in FD SOI nMOSFETs Operating in Saturation,” 8th International Caribbean Conference on Devices, Circuts and Systems, (2012).
[45] K. Takei, S. Chuang, H. Fang, R. Kapadia, C.-H. Liu, J. Nah, H. S. Kim, E. Plis, S. Krishna, Y.-L. Chueh, and A. Javey, “Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness,” Appl. Phys. Lett., 99, 103507 (2011).
[46] H. Liu, X. Zhibin, and J. K. O. Sin, “Implementation and Characterization of the Double-Gate MOSFET Using Lateral Solid-Phase Epitaxy,” IEEE Trans. Electron Dev., 50, 1552 (2003),
[47] M. Yokoyama, R. Iida, S. H. Kim, N. Taoka, Y. Urabe, T. Yasuda, H. Takagi, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, “Extremely-thin-body InGaAs-On-Insulator MOSFETs on Si fabricated by direct wafer bonding,” in IEDM Tech. Dig., 41 (2010).
[48] R. T. P. Lee, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, H.-S. Wong, P.-C. Lim, D. M.Y. Lai, G.-Q. Lo, C.-H. Tung, G. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel Nickel-Alloy Silicides for Source/Drain Contact Resistance Reduction in N-Channel Multiple-Gate Transistors with Sub-35nm Gate Length,” in IEDM Tech. Dig., 851 (2006).
[49] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamda, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “High Performance Extremely-thin Body III-V-On-Insulatoe MOSFETs on a Si substrate with Ni-InGaAs metal S/D and MOS interface buffer engineering,” in VLSI Symp. Tech. Dig., 58 (2011).
[50] C. B. Zota, S. H. Kim, Y. Asakura, M. Takenaka and S. Takagi, “Self-aligned metal S/D GaSb p-MOSFETs using Ni-GaSb alloys,” in Device Research Conference, 71 (2012).
[51] Z. Yuan, A. Nainani, J.-Y. Linl, B. R. Bennett, J. B. Boos, M. G. Ancona, and K. C. Saraswatl, “Fermi-level Pinning at Metal/Antimonides Interface and Demonstration of Antimonides-based Metal S/D Schottky pMOSFETs,” in Device Research Conference, 143 (2011).
[52] U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, B. J. Thibeault, A. C. Gossard, M. J. W. Rodwell, B. Shin, E. J. Kim, O. C. McIntyre, B. Yu, Y. Yuan, D. Wang, Y. Taur, P. Asbeck, and Y.-J. Lee, “In0.53Ga0.47As Channel MOSFETs with Self-Aligned InAs Source/Drain Formed by MEE Regrowth, IEEE Electron Device Lett. 30, 1128 (2009).
[53] M. Egard, L. Ohlsson, B. M. Borg, F. Lenrick, R. Wallenberg, L.-E. Wernersson, and E. Lind, “High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFETs,” in IEDM Tech. Dig., 304 (2011).
[54] X. Zhou, Q. Li, C. W. Tang and K. M. Lau, “30nm Enhancement-mode In0.53Ga0.47As MOSFETs on Si Substrates Grown by MOCVD Exhibiting High Transconductance and Low On-resistance,” in IEDM Tech. Dig., 773 (2012).
[55] Y. Sun, E. W. Kiewra, J. P. de Souza, J. J. Bucchignano, K. E. Fogel, D. K. Sadana, and G. G. Shahidi, “Scaling of In0.7Ga0.3As Buried-Channel MOSFETs,” in IEDM Tech. Dig. Tech. Dig., 367 (2008).
[56] M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and R. Chau, ”Advanced High-K Gate Dielectric for High-Performance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Application,” in IEDM Tech. Dig., 319 (2009).
[57] M. Radosavljevic, G. Dewey, J. M. Fastenau, J. Kavalieros, R. Kotlyar, B. Chu-Kung, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and Robert Chau, “Non-Planar, Multi-Gate InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications,” in IEDM Tech. Dig., 126 (2010).
[58] F. Xue, A. Jiang, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. Lee, “Sub-50-nm In0.7Ga0.3As MOSFETs With Various Barrier Layer Materials,” IEEE Electron Device Lett., 33, 32 (2012).
[59] F. Xue, A. Jiang, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. Lee, “Channel Thickness Dependence of InGaAs Quantum-Well Field-Effect Transistors With High-κ Gate Dielectrics,” IEEE Electron Device Lett., 33, 1255 (2012).
[60] F. Xue, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. C. Lee, “InAs inserted InGaAs buried channel metal-oxide-semiconductor field-effect-transistors with atomic-layer-deposited gate dielectric,” Appl. Phys. Lett., 98, 082106 (2011).
[61] T.-W. Kim, R. J. W. Hill, C. D. Young, D. Veksler, L. Morassi, S. Oktybrshky, J. Oh, C.Y. Kang, D.-H Kim, J. A. del Alamo, C. Hobbs, P. D. Kirsch, and R. Jammy,” InAs Quantum-Well MOSFET (Lg = 100 nm) with Record High gm, fT and fmax,” in VLSI Symp. Tech. Dig., 179 (2012).
[62] J. Lin, D. A. Antoniadis, and J. A. del Alamo, “Sub-30 nm InAs Quantum-Well MOSFETs with Self-aligned Metal Contacts and Sub-1 nm EOT HfO2 Insulator,” in IEDM Tech. Dig., 757 (2012).
[63] T.-W. Kim, D.-H Kim, D.-H. Koh, R. J. W. Hill, R. T. P. Lee, M. H Wong, T. Cunningham, J. A. del Alamo, S. K. Banerjee, S. Oktyabrsky, A. Greene, Y. Ohsawa, Y. Trickett, G .Nakamura, Q. Li, K. M. Lau, C. Hobbs, P. D. Kirsch, and R. Jammy, “ETB-QW InAs MOSFET with scaled body for Improved Electrostatics,” in IEDM Tech. Dig., 765 (2012).
[64] D.-H. Kim, P. Hundal, A. Papavasiliou, P. Chen, C. King, J. Paniagua, M. Urteaga, B. Brar, Y.G. Kim, J.-M. Kuo, J. Li, P. Pinsukanjana, and Y.C. Kao, “E-mode Planar Lg = 35 nm In0.7Ga0.3As MOSFETs with InP/Al2O3/HfO2 (EOT = 0.8 nm) Composite Insulator,” in IEDM Tech. Dig., 761 (2012).
[65] J. J. Gu, A. T. Neal, and P. D. Ye, “Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide- semiconductor field-effect transistors,” Appl. Phys. Lett., 99, 152113 (2011).
[66] F. Xue, A. Jiang, Y.-T. Chen, Y. Wang, F. Zhou, Y.-F. Chang and J. Lee, “Excellent Device Performance of 3D In0.53Ga0.47As Gate-Wrap-Around Field-Effect- Transistors with High-k Gate Dielectrics,” in IEDM Tech. Dig., 629 (2012).
[67] J. Lin , T. W. Kim, D. A. Antoniadis, and J. A. del Alamo, “A Self-Aligned InGaAs Quantum-Well Metal–Oxide–Semiconductor Field-Effect Transistor Fabricated through a Lift-Off-Free Front-End Process,” Appl. Phys. Exp., 5, 064002 (2012).
[68] R. T.-P. Lee, A. T.-Y. Koh, F.-Y. Liu, W.-W. Fang, T.-Y. Liow, K.-M. Tan, P.-C. Lim, A. E.-J. Lim, M. Z., K.-M. Hoe, C.-H. Tung, G.-Q. Lo, X. Wang, David K.-Y. Low, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Route to Low Parasitic Resistance in MuGFETs with Silicon-Carbon Source/Drain: Integration of Novel Low Barrier Ni(M)Si:C Metal Silicides and Pulsed Laser Annealing,” in IEDM Tech, Dig., 685 (2007).
[69] S.-M. Koh, E. Y.-J. Kong, B. Liu, C.-M. Ng, G. S. Samudra, and Y.-C. Yeo, “Contact-Resistance Reduction for Strained n-FinFETs with Silicon–Carbon Source/Drain and Platinum-Based Silicide Contacts Featuring Tellurium Implantation and Segregation,” IEEE Trans. Electron Dev., 58, 3852 (2011).
[70] W. Mizubayashi, S. Migita, Y. Morita, and H. Ota, “Exact Control of Junction Position and Schottky Barrier Height in Dopant-Segregated Epitaxial NiSi2 for High Performance Metal Source/Drain MOSFETs,” in VLSI symp. Tech. Dig., 88 (2011).
[71] C. S. Park, B. J. Cho, and D.-L. Kwong, “Thermally Stable Fully Silicided Hf-Silicide Metal-Gate Electrode,” IEEE Electron Device. Let., 25, 372 (2004).
[72] S. H. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with self-aligned metal source/drain using Co-InGaAs alloys,” Appl. Phys. Lett., 100, 073504 (2012).
[73] A. Zur, T. C. McGill, and D. L. Smith, “Fermi-level position at a semiconductor-metal interface,” Phys. Rev. B, 28, 2080 (1983).
[74] R. T. Tung, “Chemical bonding and fermi level pinning at metal-semiconductor interfaces,” Phy. Rev. Lett., 84, 6078 (2000).
[75] D.-H. Kim and J.s A. del Alamo, “Scaling Behavior of In0.7Ga0.3As HEMTs for Logic,” in IEDM Tech. Dig., 837 (2006).
[76] Y. C. Chou, M. D. Lange, B. R. Bennett, J. B. Boost, J. M. Yang, N. A. Papanicolaou, C. H. Lin, L. J. Lee, P. S. Nam, A. L. Gutierrez, D. S. Farkas, R. S. Tsai, M. Wojtowicz, T. P. Chin, and A. K. Oki, “0.1 μm In0.2Al0.8Sb-InAs HEMT Low-Noise Amplifiers for Ultralow-Power Applications,” in IEDM Tech. Dig., 617 (2007).
[77] G. Dewey, R. Kotlyar, R. Pillarisetty, M. Radosavljevic, T. Rakshit, H. Then, and R. Chau, “Logic Performance Evaluation and Transport Physics of Schottky-Gate III-V Compound Semiconductor Quantum Well Field Effect Transistors for Power Supply Voltages (VCC) Ranging from 0.5V to 1.0V,” in IEDM Tech. Dig., 487 (2009).
[78] L. Xia., Vadim Tokranov., Serge R Oktyabrsky, and J. A. del Alamo, “Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain,” in IEDM Tech. Dig., 315 (2011).
[79] S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding and R. Chau, “85nm Gate Length Enhancement and Depletion mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications,” in IEDM Tech. Dig., 763 (2005).
[80] H. C. Lin, T. Yang, H. Sharifi, S. K. Kim, Y. Xuan, T. Shen, S. Mohammadi, and P. D. Ye, “Enhancement-mode GaAs metal-oxide-semiconductor high-electron- mobility transistors with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., 91, 212101 (2007).
[81] Q. Li, X. Zhou, C. W. Tang, and K. M. Lau, “High-Performance Inverted In0.53Ga0.47As MOSHEMTs on a GaAs Substrate With Regrown Source/Drain by MOCVD,” IEEE Electron Device Lett., 33, 246 (2012).
[82] T. Dutta, Q. Rafhay, R. Clerc, J. Lacord, S. Monfray, G. Pananakakis, F. Boeuf and G. Ghibaudo, “Origins of the Short Channel Effects Increase in III-V nMOSFET Technologies,” in 13th International Conference on Ultimate Integration on Silicon, 25 (2012).
[83] A. M. Waite, N.S. Lloyd, P. Ashburn, A. G. R. Evans, T. Ernst, H. Achard, S. Deleonibus, Y. Wang, and P. Hemment, “Raised source/drain (RSD) for 50nm MOSFETs - effect of epitaxy layer thickness on short channel effects,” in European Solid-State Device Research Conference, 223 (2003).
[84] H. Y. Lin, S. L. Wu, S. J. Chang, Y. P. Wang, Y. M. Lin, and C. W. Kuo,” Strained-Si nMOSFET with a raised source/drain structure,” Semiconductor Science and Technology, 24, 015015 (2009).
[85] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes, J. Sebastian, J. Seiple, B. Sell, A. Sharma, S. Sivakumar, B. Song, A. St. Amour, K. Tone, T. Troeger, C. Weber, K. Zhang, Y. Luo, and S. Natarajan, “High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors,” in IEDM Tech. Dig., 659 (2009).
[86] N. Subba, S. Luning, C. Riccobene, T. Feudel, A. Wei, and M. Horstmann, “Optimal Contact Placement in Partially Depleted SOI with Application to Raised Source-Drain Structures,” in Simulation of Semiconductor Process and Devices, 319 (2004).
[87] K. Yako, K. Uejima, T. Yamamoto, A. Mineji, T. Nagumo, T. Ikezawa, N. Matsuzaka S. Shishiguchi, T. Hase and M. Hane, “Aggressive Design of Millisecond Annealing Junctions for Near-Scaling-Limit Bulk CMOS using Raised Source/Drain Extensions,” in IEDM Tech. Dig., 909 (2008).
[88] J. Lin, S. Lee, H.-J. Oh, W. Yang, G. Q. Lo, D. L. Kwong and D. Z. Chi, “Plasma PH3-Passivated High Mobility Inversion InGaAs MOSFET Fabricated with Self-Aligned Gate-First Process and HfO2/TaN Gate Stack,” in IEDM Tech. Dig., 401 (2008).
[89] S. H. Kim, M.Yokoyama, N.Taoka, R.Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, “Enhancement Technologies and Physical Understanding of Electron Mobility in III-V n-MOSFETs with Strain and MOS Interface Buffer Engineering,” in IEDM Tech. Dig., 311 (2011).
[90] J. Hu, K. C. Saraswat, and H.-S. P. Wong, ”Experimental demonstration of In0.53Ga0.47As field effect transistors with scalable nonalloyed source/drain contacts,” Appl. Phys. Lett., 98, 062107 (2011).
[91] J. Hu and H.-S. P. Wong, “Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs,” J. Appl. Phys., 111, 044105 (2012).
[92] D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, “Fermi-level depinning for low-barrier schottky source/drain transistors,” Appl. Phy. Lett., 88, 012105, (2006).
[93] B. E. Coss, C. Smith, W.-Y. Loh, P. Majhi, R. M. Wallace, J. Kim, and R. Jammy, “Contact resistance reduction to finfet source/drain using novel dielectric dipole schottky barrier height modulation method,” IEEE Electron Device Lett., 32, 862 (2011).
[94] T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Exp., 1, 051406 (2008).
[95] M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S. P. Wong, and Y. Nishi, “Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application,” J. Appl. Phys., 105 023702 (2009).
[96] D. Lee, S. Raghunathan, R. J. Wilson, D. E. Nikonov, K. Saraswat, and S. X. Wang, “The influence of fermi level pinning/depinning on the schottky barrier height and contact resistance in Ge/CoFeB and Ge/MgO/CoFeB structures,” Appl. Phys. Lett., 96, 052514 (2010).
[97] R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, “Ohmic contact formation on n-type Ge,” Appl. Phys. Lett., 92, 022106 (2008).
[98] J.-Y. J. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, ”Increase in current density for metal contacts to n-Germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett., 98, 092113 (2011).
[99] Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R. K. Kawakami, and K.. L. Wang, “Investigating the origin of fermi level pinning in Ge schottky junctions using epitaxially grown ultrathin MgO films,” Appl. Phys. Lett., 96, 102103 (2010).
[100] J. Hu, D. Choi, J. S. Harris, K. Saraswat, and H.-S. P. Wong, “Fermi-level depinning of GaAs for ohmic contacts,” in Device Research Conference, 89 (2008).
[101] T. Nishimura, K. Kita, and A. Toriumi, ”Evidence for strong fermi level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett., 91, 123123 (2007).
[102] J. Tersoff, “Schottky Barrier Heights and the Continuum of Gap States,” Phys. Rev. Lett., 52, 465 (1984).
[103] R. T. Tung, “Formation of an electric dipole at metal-semiconductor interfaces,” Phys. Rev. B, 64, 205310 (2001).
[104] V. Heine, “Theory of Surface States,” Phys. Rev., 138, 1689 (1965).
[105] W. Monch, “On the physics of metal-semiconductor interfaces,” Rep. Prog. Phys., 53, 221 (1990).
[106] J. F. Wager and J. Robertson, “Metal-induced gap states modeling of metal-Ge contacts with and without a silicon nitride ultrathin interfacial layer,” J. Appl. Phys., 109, 094501 (2011).
[107] A. Agrawal, N. Shukla, K. Ahmed, and S. Datta, “A unified model for insulator selection to form ultra-low resistivity metal-insulator- semiconductor contacts to n-Si, n-Ge, and n-InGaAs,” Appl. Phys. Lett., 101, 062107 (2011).
[108] J. Hu, K. C. Saraswat, and H.-S. P. Wong, “Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts,” J. Appl. Phys., 107, 063712 (2010).
[109] P. Paramahans, S. Gupta, R. K. Mishra, N. Agarwal, A. Nainani, Y. Huang, M.C. Abraham, S. Kapadia, U. Ganguly, and S. Lodha, “ZnO: an attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts,” in VLSI Symp. Tech. Dig., 83 (2012).
[110] S. Takagi, “High Mobility Materials: III-V/Ge FETs,” in IEDM Tech. Dig., short course, 72 (2011).
[111] J. D. Yearsley, J. C. Lin, E. Hwang, S. Datta, and S. E. Mohney, “Ultra low-resistance palladium silicide Ohmic contacts to lightly doped n-InGaAs,” J. Appl. Phys., 112, 054010 (2012).
[112] V. Djara, K. Cherkaoui, M. Schmidt, S. Monaghan, E. O’Connor, I. M. Povey, D. O’Connell, M. E. Pemble, and P. K. Hurley, “Impact of Forming Gas Annealing on the Performance of Surface-Channel In0.53Ga0.47As MOSFETs With an ALD Al2O3 Gate Dielectric,” IEEE Trans. Electron Dev., 59, 1084 (2012).
[113] S. H. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “Sub-60 nm Deeply-Scaled Channel Length Extremely-thin Body InxGa1-xAs-On-Insulator MOSFETs on Si with Ni-InGaAs Metal S/D and MOS Interface Buffer Engineering,” in VLSI Symp. Tech. Dig., 177 (2012).
[114] R. J. W. Hill, C. Park, J. Barnett, J. Price, J. Huang, N. Goel, W.Y. Loh, J. Oh, C. E. Smith, P. Kirsch, P. Majhi, R. Jammy, “Self-aligned III-V MOSFETs heterointegrated on a 200 mm Si substrate using an industry standard process flow,” in IEDM Tech. Dig., 130 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61326-
dc.description.abstract本篇論文著重在砷化銦鎵量子井金氧半場效電晶體的製作以及其電性效能的提升,尤其是特別著重在源/汲極阻值的降低,而其內容主要可分為兩大部分,第一部分為利用抬昇式源/汲極來降低阻值;第二部分則是利用超薄介電層之嵌入來降低接觸電阻。
隨著矽基元件逐漸面臨了其發展的瓶頸,三五族化合物半導體因此被視為是下一個世代N型電晶體通道的替代材料。其原因主要是因為三五族化合物擁有較高的電子遷移率以及較低的等效電子質量。然而不像矽基元件成熟的發展,三五族半導體的發展仍有許多困難需要克服,其中一項就是源/汲極阻值的降低。
首先我們製作了1微米閘極長度之砷化銦鎵量子井金氧半場效電晶體,此製程特點包含了非離子佈植的源/汲極、高源/汲極摻雜濃度、低製程熱預算,因此非常適合未來10奈米節點以下的製程。利用改變最上層重摻雜砷化銦鎵層的厚度,我們可以找出最佳化的抬昇式源/汲極結構。我們發現當重摻雜砷化銦鎵層的厚度為30奈米時,元件有最高的飽和電流(0.246 mA/μm)、最高的轉移電導(0.35 mS/μm)及最低的源/汲極阻值(230 Ω-μm)。另外,也因為製程熱預算低的關係,元件的次臨界擺幅(95 mV/dec)與汲極引致能障下降(45 mV/V)也都相當低。
為了繼續降低源/汲極的阻值,源/汲極的接觸電阻必須要再降低。在此,我們將一層超薄介電層嵌入至電晶體源/汲極的金屬與半導體間,形成金屬─絕緣層─半導體的結構。此結構可有效降低原本位於金屬─半導體間,其介面所發生的費米能階釘札,而此費米能階釘札會造成介面間的蕭特基能障居高不下,進而導致接觸電阻的上升。首先我們利用不同接觸金屬(鎳、鋁、鈦)以及不同介電層(氧化鋁、二氧化鈦、氧化鋅)製作出的二極體以及相關的量測圖形來量測其最佳化的結果。由實驗可知當接觸金屬為鋁,介電層為0.6奈米的氧化鋅時,其接觸結構有最低的接觸電阻率(6.7 x 10-9 Ω-cm2)以及相當低的蕭特基能障(0.05 eV)。我們將此結果實際應用在砷化銦鎵量子井金氧半場效電晶體的源/汲極上。在這裡,元件的源/汲極結構是參考前述最佳化抬昇式源/汲極的結果。由1微米閘極長度的元件電性可看出,隨著0.6奈米的氧化鋅嵌入,元件可達到更高的飽和電流(0.416 mA/μm)及轉移電導(0.612 mS/μm)。我們把推測此結果是因為源/汲極的電阻從原本的230 Ω-μm降到了190 Ω-μm。值得注意的是,元件的次臨界擺幅(97 mV/dec)與汲極引致能障下降(53 mV/V)並未因為氧化鋅的嵌入而有明顯的下降。
最後我們將此實驗結果與其他研究團隊的成果做比較,經比較可發現在相近閘極長度的範圍內,我們元件有較好的效能。而我們也預期,隨著元件閘極長度的縮減,元件的效能可以再更進一步的提升。
zh_TW
dc.description.abstractIn this thesis, we focus on the investigation and demonstration of the indium gallium arsenide (In0.53Ga0.47As) quantum-well metal-oxide-semiconductor field-effect transistors (QW-MOSFETs); especially on the source/drain (S/D) regime. Source/drain resistance (RSD) becomes dominant which is mainly attributed to the size scaling and mobility enhancement. To reduce RSD, the strategies for S/D engineering are mainly divided into two parts – raised S/D and metal-insulator-semiconductor (M-I-S) contact.
In the first part, we demonstrate the 1-μm-gate-length (Lg) implant-free In0.53Ga0.47As QW-MOSFETs with raised S/D structure.Through varying the thickness of n++ InGaAs cap layer (Tcap), the optimized structure can be obtained. The optimized Tcap is 30 nm with the highest saturation current (ID,sat) of 0.246 mA/μm and peak transconductance (Gm) of 0.35 mS/μm. We attribute this exceptional on-state performance to the low RSD of 230 Ω-μm at Tcap = 30 nm. On the other hand, due to implant-free gate-last process with low thermal budget, the subthreshold swing (SS) and drain-induced barrier lowering (DIBL) is 95 mV/dec and 45 mV/V, respectively.
In order to further reduce the RSD, a novel contact structure, M-I-S contact, is implemented to reduce contact resistance. For conventional metal-semiconductor junction, a strong Fermi-level pinning occurred at the interface and because of the Fermi-level pinning, Schottky barrier (ΦBn) becomes uncontrollable by the metal workfunction and thus results in high ΦBn in general cases. The M-I-S contact with ultra-thin dielectric insertion is used to depin the Fermi-level and thus results in low ΦBn. With inserted dielectric, a tradeoff exists between a decreased Schottky resistance and an increased tunneling resistance. The optimized M-I-S contact structure is obtained to be Al/0.6-nm-ZnO/n++ In0.53Ga0.47As with low ΦBn of 0.05 eV and specific contact resistivity of 6.7 x 10-9 Ω-cm2. ZnO is the optimal choice in this experiment due to the lowest conduction offset with In0.53Ga0.47As. The pinning factor is also obtained and is improved from 0.06 to 0.3 through 0.6-nm-ZnO insertion.
Next, we apply this technology on the 1-μm-Lg implant-free In0.53Ga0.47As QW-MOSFETs with optimized raised S/D. ID,sat and peak Gm is 0.416 mA/μm and 0.612 mS/μm, respectively. The RSD is found to be 190 Ω-μm with 70 Ω-μm reduction compared with directly contact. This reduction is attributed to the Rc decreasing through the M-I-S implementation. In addition, off-state characteristics such as SS (97 mV/dec) and DIBL (53 mV/V) is still kept at similar level.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:06Z (GMT). No. of bitstreams: 1
ntu-102-R00522631-1.pdf: 6062570 bytes, checksum: ae6723a4f3eb8deddf11aa02590cc330 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract V
Table of Contents VII
List of Figures X
List of Tables XVII
Chapter 1. Introduction 1
1.1. On the Scaling Limit of Planar Silicon MOSFETs 1
1.2. The Rationale for Using III-V Compounds 3
1.3. Development of III-V CMOS 7
1.4. Thesis Organization 10
Chapter 2. Fundamentals of MOSFET and Literature Review 13
2.1. Fundamental Operation of MOSFET 13
2.2. Metal-Semiconductor Contact System 22
2.2.1. Schottky Barrier Height 22
2.2.2. Contact Resistance 30
2.3. Novel Structure for Advanced CMOS Technology to Boost On- and Off-state Performance 33
2.3.1. Non Planar and Non Bulk Structure for the Future Applications 33
2.3.2. Strategies for the Source/Drain Resistance Reduction 35
2.3.3. Scaling of Contact Resistance 38
2.4. Literature Review: QW-FETs for the High-Speed and Low-Power Applications 40
Chapter 3. Investigation of Raised S/D Structure on In0.53Ga0.47As QW-MOSFETs 46
3.1. Introduction 46
3.2. Device Fabrication and Characterization 47
3.2.1. Wafer Structure and Characteristics 47
3.2.2. Fabrication Process and Recipe Investigation 50
3.3. Results and Discussions 57
3.4. Conclusions 63
Chapter 4. Demonstration of Fermi-level Depinning for the Ultra-low RSD in In0.53Ga0.47As QW-MOSFETs 65
4.1. Introduction 65
4.2. M-I-S Contact for the Fermi-level Depinning 66
4.2.1. Fermi-level Pinning in M-S Contact 66
4.2.2. The Mechanism of Fermi-level Depinning in M-I-S Contact 69
4.3. Device Fabrication and Characterization 78
4.3.1. Module Study for the Schottky Barrier Height and Contact Resistivity Measurement 78
4.3.2. Fabrication of InGaAs QW-MOSFETs 80
4.4. Results and Discussions 81
4.5. Conclusions 94
Chapter 5. Summaries and Future Works 96
5.1. Summaries 96
5.2. Future Works 98
References 101
dc.language.isozh-TW
dc.subject砷化銦鎵zh_TW
dc.subject蕭特基能障zh_TW
dc.subject源/汲極阻值zh_TW
dc.subject費米能階釘札zh_TW
dc.subject量子井金氧半場效電晶體zh_TW
dc.subject接觸電阻率zh_TW
dc.subject抬昇式源/汲極zh_TW
dc.subjectSchottky barrieren
dc.subjectquantum-well metal-oxide-semiconductor field-effect transistors (QW-MOSFETs)en
dc.subjectsource/drain resistanceen
dc.subjectraised source/drainen
dc.subjectFermi-level pinningen
dc.subjectIndium gallium arsenide (In0.53Ga0.47As)en
dc.title砷化銦鎵量子井金氧半場效電晶體-利用抬昇式源/汲極結構和超薄介電層之嵌入達到源/汲極阻值的降低zh_TW
dc.titleExperimental Demonstration of Reducing Source/Drain Resistance in In0.53Ga0.47As QW-MOSFETs through the Raised Source/Drain and Ultrathin Dielectric Insertionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏鴻,陳敏璋,曾院介
dc.subject.keyword砷化銦鎵,量子井金氧半場效電晶體,源/汲極阻值,抬昇式源/汲極,接觸電阻率,蕭特基能障,費米能階釘札,zh_TW
dc.subject.keywordIndium gallium arsenide (In0.53Ga0.47As),quantum-well metal-oxide-semiconductor field-effect transistors (QW-MOSFETs),source/drain resistance,raised source/drain,Fermi-level pinning,Schottky barrier,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2013-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved