請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘(Hsin-Min Lu) | |
| dc.contributor.author | Ju-Hsuan Chen | en |
| dc.contributor.author | 陳如軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:00:56Z | - |
| dc.date.available | 2013-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-08 | |
| dc.identifier.citation | 1. Bates, D. W., Spell, N., Cullen, D. J., Burdick, E., Laird, N., Petersen, L. A., ... & Leape, L. L. (1997). The costs of adverse drug events in hospitalized patients. JAMA: the journal of the American Medical Association, 277(4), 307-311.
2. Bedell, Susanna E., et al. 'Discrepancies in the use of medications: their extent and predictors in an outpatient practice.' Archives of Internal Medicine 160.14 (2000): 2129. 3. Glintborg, B., Andersen, S. E., & Dalhoff, K. (2007). Insufficient communication about medication use at the interface between hospital and primary care. Quality and Safety in Health Care, 16(1), 34-39. 4. Midlöv, P., Holmdahl, L., Eriksson, T., Bergkvist, A., Ljungberg, B., Widner, H., ... & Höglund, P. (2008). Medication report reduces number of medication errors when elderly patients are discharged from hospital. Pharmacy World & Science, 30(1), 92-98. 5. Seaton, T. L., Gergen, S. S., Reichley, R. M., Dunagan, W. C., & Bailey, T. C. (2005). Concordance between medication histories and outpatient electronic prescription claims in patients hospitalized with heart failure. In AMIA Annual Symposium Proceedings (Vol. 2005, p. 1109). American Medical Informatics Association. 6. Pronovost, P., Weast, B., Schwarz, M., Wyskiel, R. M., Prow, D., Milanovich, S. N., ... & Lipsett, P. (2003). Medication reconciliation: a practical tool to reduce the risk of medication errors. Journal of critical care, 18(4), 201-205. 7. Barnsteiner, J. H. (2005). Medication reconciliation: transfer of medication information across settings—keeping it free from error. AJN The American Journal of Nursing, 105(3), 31-36. 8. Hasan, S., Duncan, G. T., Neill, D. B., & Padman, R. (2011). Automatic detection of omissions in medication lists. Journal of the American Medical Informatics Association, 18(4), 449-458. 9. Santell, J. P. (2006). Reconciliation failures lead to medication errors. Joint Commission journal on quality and patient safety/Joint Commission Resources, 32(4), 225. 10. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022. 11. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6), 721-741. 12. Blei, D. M., & Jordan, M. I. (2003, July). Modeling annotated data. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 127-134). ACM. 13. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences of the United States of America, 101(Suppl 1), 5228-5235. 14. Newman, M. E. J., & Barkema, G. T. (1999). Monte Carlo Methods in Statistical Physics. 15. Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice. 16. Liu, J. S. Monte Carlo Strategies in Scientific Computing. 2001. NY: Springer. 17. National Coordinating Council for Medication Error Reporting and Prevention, Retrieved June 24, 2013, from http://www.nccmerp.org/aboutMedErrors.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61313 | - |
| dc.description.abstract | Medication Error (用藥疏失) 是指因為不當使用藥物而對病患安全產生危害的事件,醫師開立之處方箋與病患實際所服用藥物有差異是造成其發生的主要原因之一。在眾多藥物資訊差異型態中,尤以藥物資訊遺失為大宗。若能修正藥物清單的錯誤,還原遺失的藥物資訊,便能使病患受到更完善的醫療照顧,故本研究希望提出一個有效的方法偵測藥物清單上的遺失項目。
本研究以類比主題建模 (topic modeling) 的方式,找出診斷資訊與藥物資訊共同的潛藏因子,建立兩者之間的關聯,透過可觀察的資訊預測藥物清單上可能遺失的項目。本研究以Latent Dirichlet Allocation (潛藏狄利克雷分配,簡稱LDA) 主題模型為基礎,針對研究問題與資料將其延伸發展為Multiple Channel Latent Dirichlet Allocation (多管道潛藏狄利克雷分配,簡稱MCLDA) 模型,期望能有效地進行預測。 本研究採用全民健康保險研究資料庫的健保資料進行實驗,實驗結果證明MCLDA模型表現優於先前研究所提出的協同過濾模型,能大幅地提升預測的準確程度。MCLDA模型建立了診斷資訊與藥物資訊之間的關聯性,故亦可將偵測藥物清單遺失項目的概念延伸應用於偵測藥物清單異常項目;相同地,MCLDA模型亦可透過藥物清單的幫助進而偵測診斷清單中的異常項目。因此,本研究建構的全民健保診斷與藥物之聯合機率模型可作為往後全民健保方面相關研究的基礎。 | zh_TW |
| dc.description.abstract | A medication error is any preventable event that leads to patient harm because of inappropriate drug use. One major reason is because discrepancies may exist between drugs prescribed and drugs taken by patients. Drug omission is a major cause of discrepancies. The goal of this study is to develop a drug omission detection method to help resolve these discrepancies and improve health care quality.
This study developed a method for automatic detecting omissions in medication lists. Our key insight is that the diagnosis items and drug items from one medical visit have the same latent health condition factors. The problem is, to some degree, analogous to the topic modeling framework which is increasingly used to inference latent topics in documents. We modified the Latent Dirichlet Allocation model according to the characteristics of the health insurance claim data and developed the Multiple Channel Latent Dirichlet Allocation (MCLDA). MCLDA discovers the relationship between diagnoses and drugs and compute the conditional probability that a given drug is omitted given the observed drugs and diagnosis. We evaluate the effectiveness of MCLDA model using the medication data from National Health Insurance (NHI) Research Database. Compared with previous Collaborative Filtering methods, the results show that MCLDA has improved accuracy for drug omission predicting. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:00:56Z (GMT). No. of bitstreams: 1 ntu-102-R00725012-1.pdf: 2459925 bytes, checksum: 9df6a924a6bc82fdb7d844ae332c5a6a (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 Medication Error與Medication Reconciliation 4 2.2 以協同過濾方式協助預測藥物清單遺失項目 5 2.2.1 Drug Popularity 6 2.2.2 Co-occurrence Counting 7 2.2.3 K Nearest Neighbor (KNN) 8 2.2.4 Logistic Regression 9 2.3 Latent Dirichlet Allocation (LDA) 10 2.4 小結 15 第三章 系統設計 16 3.1 Multiple Channel Latent Dirichlet Allocation (MCLDA) 16 3.2 基準線模型 22 3.2.1 Drug Popularity 22 3.2.2 Co-occurrence Counting 22 3.3 效能衡量指標 23 第四章 資料處理 24 4.1 資料來源 24 4.2 資料抽樣與前處理 25 4.3 人造模擬資料集 26 第五章 實驗結果 29 5.1 模擬資料集A實驗結果 29 5.2 模擬資料集B實驗結果 36 5.3 全民健康保險研究資料實驗結果 42 第六章 結論與建議 57 6.1 實驗結論 57 6.2 研究貢獻 57 6.3 未來研究方向 58 參考文獻 59 附錄A 61 附錄B 63 附錄C 64 附錄C.1 模擬資料集A群組機率分佈 64 附錄C.2 模擬資料集B群組機率分佈 68 附錄C.3 健保資料集群組機率分佈 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 潛藏狄利克雷分配 | zh_TW |
| dc.subject | 用藥疏失 | zh_TW |
| dc.subject | 藥物清單 | zh_TW |
| dc.subject | 遺失偵測 | zh_TW |
| dc.subject | 主題模型 | zh_TW |
| dc.subject | omission detection | en |
| dc.subject | Medication Error | en |
| dc.subject | medication list | en |
| dc.subject | Latent Dirichlet Allocation | en |
| dc.subject | topic model | en |
| dc.title | 應用多管道潛藏狄利克雷分配偵測藥物清單遺失項目 | zh_TW |
| dc.title | Detecting Omissions in Medication Lists Using Multiple Channel Latent Dirichlet Allocation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏志平(Chih-Ping Wei),陳建錦(Chien-Chin Chen) | |
| dc.subject.keyword | 用藥疏失,藥物清單,遺失偵測,主題模型,潛藏狄利克雷分配, | zh_TW |
| dc.subject.keyword | Medication Error,medication list,omission detection,topic model,Latent Dirichlet Allocation, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-08 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
