請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61301
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童心欣 | |
dc.contributor.author | Kuang-Chieh Wang | en |
dc.contributor.author | 王光傑 | zh_TW |
dc.date.accessioned | 2021-06-16T13:00:48Z | - |
dc.date.available | 2013-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-08 | |
dc.identifier.citation | Aleem, M. I. H. (1966). Generation of reducing power in chemosynthesis II. Energy-linked reduction of pyridine nucleotides in the chemoautotroph, Nitrosomonas europaea. Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation 113(2): 216-224.
Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles (vol 437, pg 349, 2005). Nature 438(7064): 122-122. Astrid A. van de Graaf, t. P. d. B., Lesley A. Robertson, and M. M. J. a. J. G. Kuenen (1997). Metabolic pathway of anaerobic ammonium oxidation on the basis of I5N studies in a fluidized bed reactor. Microbiolog 143: 2415-2421. Capone, D. G., R. Popa, B. Flood and K. H. Nealson (2006). Follow the nitrogen. Science 312(5774): 708-709. Chen, C. J., X. X. Huang, C. X. Lei, W. J. Zhu, Y. X. Chen and W. X. Wu (2012). Improving Anammox start-up with bamboo charcoal. Chemosphere 89(10): 1224-1229. Delong, E. F., G. S. Wickham and N. R. Pace (1989). PHYLOGENETIC STAINS - RIBOSOMAL RNA-BASED PROBES FOR THE IDENTIFICATION OF SINGLE CELLS. Science 243(4896): 1360-1363. Dosta, J., I. Fernandez, J. R. Vazquez-Padin, A. Mosquera-Corral, J. L. Campos, J. Mata-Alvarez and R. Mendez (2008). Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials 154(1-3): 688-693. Egli, K., U. Fanger, P. J. J. Alvarez, H. Siegrist, J. R. van der Meer and A. J. B. Zehnder (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology 175(3): 198-207. Ferguson, S. J. (1982). IS A PROTON-PUMPING CYTOCHROME-OXIDASE ESSENTIAL FOR ENERGY-CONSERVATION IN NITROBACTER. Febs Letters 146(2): 239-243. Fernandez, I., J. Dosta, C. Fajardo, J. L. Campos, A. Mosquera-Corral and R. Mendez (2012). Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management 95: S170-S174. Fernandez, I., J. R. Vazquez-Padin, A. Mosquera-Corral, J. L. Campos and R. Mendez (2008). Biofilm and granular systems to improve Anammox biomass retention. Biochemical Engineering Journal 42(3): 308-313. Francis, C. A., J. M. Beman and M. M. M. Kuypers (2007). New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. Isme Journal 1(1): 19-27. Graaf, A. A. v. d., t. P. d. Bruijn, L. A. Robertson, M. S. M. Jetten and J. G. Kuenen (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142: 2187-2196. Hagopian, D. S. and J. G. Riley (1998). A closer look at the bacteriology of nitrification. Aquacultural Engineering 18(4): 223-244. Henry, S., D. Bru, B. Stres, S. Hallet and L. Philippot (2006). Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology 72(8): 5181-5189. Hirsch, M. D., Z. T. Long and B. Song (2011). Anammox Bacterial Diversity in Various Aquatic Ecosystems Based on the Detection of Hydrazine Oxidase Genes (hzoA/hzoB). Microbial Ecology 61(2): 264-276. Hooper, A. B., T. Vannelli, D. J. Bergmann and D. M. Arciero (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 71(1-2): 59-67. Jetten, M. S. M., M. Strous, K. T. van de Pas-Schoonen, J. Schalk, U. van Dongen, A. A. van de Graaf, S. Logemann, G. Muyzer, M. C. M. van Loosdrecht and J. G. Kuenen (1998). The anaerobic oxidation of ammonium. Fems Microbiology Reviews 22(5): 421-437. Li, M., Y. G. Hong, M. G. Klotz and J. D. Gu (2010). A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Applied Microbiology and Biotechnology 86(2): 781-790. Meincke, M., E. Krieg and E. Bock (1989). NITROSOVIBRIO SPP, THE DOMINANT AMMONIA-OXIDIZING BACTERIA IN BUILDING SANDSTONE. Applied and Environmental Microbiology 55(8): 2108-2110. Mulder, A., A. A. Vandegraaf, L. A. Robertson and J. G. Kuenen (1995). ANAEROBIC AMMONIUM OXIDATION DISCOVERED IN A DENITRIFYING FLUIDIZED-BED REACTOR. Fems Microbiology Ecology 16(3): 177-183. Ni, B. J., B. L. Hu, F. Fang, W. M. Xie, B. Kartal, X. W. Liu, G. P. Sheng, M. Jetten, P. Zheng and H. Q. Yu (2010). Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology 76(8): 2652-2656. Rotthauwe, J. H., K. P. Witzel and W. Liesack (1997). The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63(12): 4704-4712. Schmid, M. C., A. B. Hooper, M. G. Klotz, D. Woebken, P. Lam, M. M. M. Kuypers, A. Pommerening-Roeser, H. J. M. op den Camp and M. S. M. Jetten (2008). Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environmental Microbiology 10(11): 3140-3149. Schmid, M. C., B. Maas, A. Dapena, K. V. de Pas-Schoonen, J. V. de Vossenberg, B. Kartal, L. van Niftrik, I. Schmidt, I. Cirpus, J. G. Kuenen, M. Wagner, J. S. S. Damste, M. Kuypers, N. P. Revsbech, R. Mendez, M. S. M. Jetten and M. Strous (2005). Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Applied and Environmental Microbiology 71(4): 1677-1684. Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen and M. S. M. Jetten (1999). Missing lithotroph identified as new planctomycete. Nature 400(6743): 446-449. Strous, M., J. J. Heijnen, J. G. Kuenen and M. S. M. Jetten (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology 50(5): 589-596. Strous, M., J. G. Kuenen and M. S. M. Jetten (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology 65(7): 3248-3250. Strous, M., E. VanGerven, P. Zheng, J. G. Kuenen and M. S. M. Jetten (1997). Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research 31(8): 1955-1962. Sun, W. J., Q. Banihani, R. Sierra-Alvarez and J. A. Field (2011). Stoichiometric and molecular evidence for the enrichment of anaerobic ammonium oxidizing bacteria from wastewater treatment plant sludge samples. Chemosphere 84(9): 1262-1269. Thamdrup, B. and T. Dalsgaard (2002). Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68(3): 1312-1318. Trigo, C., J. L. Campos, J. M. Garrido and R. Mendez (2006). Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology 126(4): 475-487. Van der Star, W. R. L., W. R. Abma, D. Blommers, J. W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu and M. C. M. Van Loosdrecht (2007). Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research 41(18): 4149-4163. Van der Star, W. R. L., A. I. Miclea, U. G. J. M. van Dongen, G. Muyzer, C. Picioreanu and M. C. M. van Loosdrecht (2008). The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering 101(2): 286-294. Van Rijn, J., Y. Tal and H. J. Schreier (2006). Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering 34(3): 364-376. Watson, S. W., E. Bock, F. W. Valois, J. B. Waterbury and U. Schlosser (1986). NITROSPIRA-MARINA GEN-NOV SP-NOV - A CHEMOLITHOTROPHIC NITRITE-OXIDIZING BACTERIUM. Archives of Microbiology 144(1): 1-7. Winkler, M. K. H., J. P. Bassin, R. Kleerebezem, D. Y. Sorokin and M. C. M. van Loosdrecht (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology 94(6): 1657-1666. 李茂松 (2009). 受污染地下水之複合式生物脫硝系統開發. 博士, 交通大學. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61301 | - |
dc.description.abstract | 厭氧氨氮氧化程序簡稱Anammox,為近幾十年所發展的一項新穎除氮技術,但目前在實場的應用上存在著許多缺點:(一)生長速度慢,半生期約7~12天(二)對環境要求嚴苛,因此系統不易建立。由於上述的缺點,造成了Anammox系統目前還無法普遍的應用在實場上。本研究採集迪化及內湖汙水處理廠之汙泥於實驗室內自行馴養Anammox,並利用專一性PCR來確認Anammox馴養是否成功,待馴養成功後,進行系統之菌相分析,來了解馴養之菌相分布,最後添加多孔性材料當作Anammox之載體,希望增加系統汙泥之沉降特性並藉著凝聚能力之上升進而增加形成顆粒汙泥之機會。
由本次研究之結果發現,在利用廢水處理廠汙泥所馴養之Anammox,在系統馴養後期高氨氮(490mg/L)及亞硝酸氮(700mg/L)進流之情況下,其系統除氮效率可達到99%以上,而此時馴養系統之菌群分布有大於99%可能屬於Cadidatus Kuenenia stuttgartiensis。而材料添加對於汙泥性質影響部分,在添加後系統汙泥之沉降性質有明顯的增加,汙泥容積指標由175下降為114,但材料添加卻造成系統之除氮能力大幅下降,直到添加後40天,系統除氮能力才漸漸的恢復(>95%) ,在經由real time PCR針對Anammox及其他菌群定量之結果,發現添加材料後對於系統內Anammox可能具有抑制活性或者傷害之性質,但添加材料後之環境反而助長了脫硝菌的生長,因此由實驗結果了解到多孔性鍛燒材料的添加應能增加汙泥凝聚之特性,但若應用於Anammox汙泥系統中,則可能會造成系統除氮能力之喪失。 | zh_TW |
dc.description.abstract | Anaerobic ammonium oxidation process (Anammox) is a novel technology developed for nitrogen removal, especially for wastewater with high organic nitrogen content. However, limitations of its full-scale application include (1) low bacterial growth rate and long doubling time (approximately 7 to 12 day), and (2) requirement of severe operation conditions for bacterial cultivation. The objectives of this study were to establish an anammox reactor from domestic wastewater sludge and investigate the effects of porous material to bacterial aggregation in the reactor. A lab-scale reactor was used to cultivate Anammox bacteria. The results show that the Anammox reactor can achieve over 99% of nitrogen removal efficiencies with the maximum concentrations of nitrite and ammonium of 700 mg/L and 490 mg/L, respectively. The microbial community analysis of this Anammox system revealed that over 99% of bacteria were phylogenetically close to Cadidatus Kuenenia stuttgartiensis. The addition of the porous material increased the sludge settling velocity; the sludge volume index decreased from 175 to 114. However, it significantly decreased the removal efficiencies of ammonia and nitrite (<50%). The removal efficiencies slowly recovered and remained at a steady state (>95%) after 40 days of porous material addition. The results of real-time quantitative PCR using functional-gene-specific primers indicated that the addition of porous material may have adverse effects on Anammox bacteria while it may favor the growth of denitrification bacteria. The study reveals that the addition of porous material may enhance sludge settling and aggregation, however, it tends to lower nitrogen removal efficiency of Anammox system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:00:48Z (GMT). No. of bitstreams: 1 ntu-102-R00541125-1.pdf: 2393083 bytes, checksum: 976dcba4ea12fa97fc9ec1d35571a15c (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 總目錄 V 圖目錄 VII 表目錄 VIII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 環境中的氮循環 4 2.1.1 硝化作用 6 2.1.2 脫硝作用 7 2.1.3 厭氧氨氮氧化作用(Anaerobic ammonium oxidation) 8 2.2 Anammox之偵測技術 10 2.2.1 螢光原位雜交法(FISH) 10 2.2.2 聚酶鏈鎖反應(PCR) 11 2.2.3 15N追蹤法 12 2.2.4 掃描式電子顯微鏡(SEM) 12 2.3 Anammox汙泥之應用載體 13 第三章 實驗方法 14 3.1 實驗架構 14 3.2 汙泥採集及處理 16 3.3 馴養環境的控制 18 3.3.1 pH值 18 3.3.2 溶氧(Dissolve oxygen)值 19 3.3.3 溫度 19 3.3.4 系統氨氮及、硝酸鹽濃度及硝酸鹽濃度 20 3.4 汙泥分析 22 3.4.1 DNA extraction 22 3.4.2 Anammox引子之收集及測試 24 3.4.3 TA cloning 29 3.4.4 DNA濃度測量 32 3.4.5 real time PCR 33 3.5 Anammox之沉降分析 36 第四章 實驗結果與討論 39 4.1 Anammox系統之建立 39 4.2 Anammox之馴養及菌相分析 44 4.3 材料添加後對系統氮處理之影響 48 4.4 多孔性材料添加對Anammox系統內菌群之影響 50 4.5 材料添加對Anammox系統汙泥沉降之影響 53 第五章 結論與建議 56 5.1 結論 56 5.2 建議 58 參考文獻 59 附錄 63 | |
dc.language.iso | zh-TW | |
dc.title | 多孔性材料添加對於Anammox系統功能之影響 | zh_TW |
dc.title | The Effects of Porous Material Addition to Anammox’s Nitrogen Removal | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正芳,林郁真,陳佩貞 | |
dc.subject.keyword | 氮去除,多孔性材料,厭氧氨氮氧化菌,即時聚合?鏈鎖反應, | zh_TW |
dc.subject.keyword | Nitrogen removal,Anammox,Porous material,Real time PCR, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。