請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61233完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧 | |
| dc.contributor.author | Po-Hsuen Chen | en |
| dc.contributor.author | 陳柏璇 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:54:51Z | - |
| dc.date.available | 2015-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | [1] Bader D. et al., Repair and reorganization of minced cardiac-muscle in adult newt, Journal of Morphology, 1978, 155, 349
[2] Baig M. K. et al., The pathophysiology of advanced heart failure, Heart Lung, 1999, 28, 87 [3] Baji A. et al., Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties, Composites Science and Technology, 2010, 70, 703 [4] Bajsic E. G. et al., DSC study of morphological changes in segmented polyurethane elastomers, Journal of Elastomers and Plastics, 2000, 32, 162 [5] Beltrami A. P. et al., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, 2003, 114, 763 [6] Brandrup J., Immergut E. H., Polymer Handbook, 1989, pp. VII/1 ff. [7] Chen Q. Z. et al., Biomaterials in cardiac tissue engineering: Ten years of research survey, Materials Science and Engineering R, 2008, 59, 1 [8] Do T. A. L. et al., Use of ethylcellulose polymers as stabilizer in fat-based food suspensions examined on the example of model reduced-fat chocolate, Reactive & Functional Polymers, 2010, 70, 856 [9] Etzion S. et al., Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction, Journal of Molecular and Cellular Cardiology, 2001, 33, 1321 [10] Evans M. J. et al., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, 292, 154 [11] Fridrikh S. V. et al., Controlling the fiber diameter during electrospinning, Physical Review Letters, 2003, 90, 144502 [12] Fujimoto K. L. et al., An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction, Journal of the American College of Cardiology, 2007, 49, 2292 [13] Fujimoto K. L. et al., Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium, Biomaterials, 2009, 30, 4357 [14] Girija B. G. et al., Mechanical and thermal properties of EVA blended with biodegradable ethyl cellulose, Journal of Applied Polymer Science, 2010, 116, 1044 [15] Gogolewski S. et al., Polyurethane vascular prostheses in pigs, Colloid and Polymer Science, 1987, 265, 774 [16] Greiner A., Wendorff J. H., Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 2007, 46, 5670 [17] Guan J. J. et al., Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine, Journal of Biomedical Materials Research, 2002, 61, 493 [18] Guan J. J. et al., The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics, Biomaterials, 2011, 32, 5568 [19] Hashi C. K. et al., Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts, Proceedings of the National Academy of Sciences, 2007, 104, 11915 [20] Hidalgo-Bastida L. A. et al., Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering, Acta Biomaterialia, 2007, 3, 457 [21] Hong Y. et al., A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend, Biomaterials, 2009, 30, 2457 [22] Hu H. T. et al., Processing and properties of hydrophilic electrospun polylactic acid/beta-tricalcium phosphate membrane for dental applications, Polymer Engineering & Science, 2013, 53, 833 [23] Huang C. et al., Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery, Biomaterials, 2012, 33, 962 [24] Huanga L.Y. et al., Time-engineeringed biphasic drug release by electrospun nanofiber meshes, International Journal of Pharmaceutics, 2012, 436, 88 [25] Ishii O. et al., In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography, Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1358 [26] Ji W. et al., Incorporation of stromal cell-derived factor-1 alpha in PCL/gelatin electrospun membranes for guided bone regeneration, Biomaterials, 2013, 34, 735 [27] Kehat I. et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes, Journal of Clinical Investigation, 2001, 108, 407 [28] Kim Y. J. et al., A smart nanofiber web that captures and releases cells, Angewandte Chemie International Edition, 2012, 51, 10537 [29] Klug M.G. et al., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts, Journal of Clinical Investigation, 1996, 98, 216 [30] Kocher A. A. et al., Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nature Medicine, 2001, 7, 430 [31] Kofidis T. et al., Myocardial restoration with embryonic stem cell bioartificial tissue transplantation, Journal of Heart and Lung Transplantation, 2005, 24, 737 [32] Koh G. Y. et al., Differentiation and long-term survival of C2C12 myoblast grafts in heart, Journal of Clinical Investigation, 1993, 92, 1548 [33] Kolff W. J. et al., Artificial heart in the chest and use of polyurethane for making heart, valves and aortas, Transactions American Society for Artificial Internal Organs, 1959, 5, 298 [34] Lai H. L. et al., Characterisation of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches, International Journal of Pharmaceutics, 2010, 386, 178 [35] LaNasa S. M. et al., Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering, Acta Biomaterialia, 2009, 5, 2929 [36] Langer R. et al., Tissue Engineering, Science, 1993, 260, 920 [37] Leor J. et al., Transplantation of fetal myocardial tissue into the infarcted myocardium of rat: A potential method for repair of infarcted myocardium, Circulation, 1996, 94, 332 [38] Li L. et al., The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds, Biomaterials, 2012, 33, 3428 [39] Li R. K. et al., Cardiomyocyte transplantation improves heart function, Annals of Thoracic Surgery, 1996, 62, 654 [40] Li R. K. et al., Survival and function of bioengineered cardiac grafts, Circulation, 1999, 100, 63 [41] Lim C. T. et al., Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers, Applied Physics Letters, 2008, 92, 141908 [42] Liu X. et al., Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100, 1556 [43] Mangi A. A. et al., Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nature Medicine, 2003, 9, 1195 [44] Min et al., Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells, Journal of Thoracic and Cardiovascular Surgery, 2003, 125, 361 [45] Miyagi Y. et al., Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair, Biomaterials, 2011, 32, 1280 [46] Orlic D. et al., Bone marrow cells regenerate infarcted myocardium, Nature, 2001, 410, 701 [47] Orlova Y. et al., Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue, Biomaterials, 2011, 32, 5615 [48] Parrag I. C. et al., Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering, Biotechnology and Bioengineering, 2012, 109, 813 [49] Penn M. S. et al., Autologous cell transplantation for the treatment of damaged myocardium. Progress in Cardiovascular Diseases, 2002, 45, 21 [50] Prabhakaran M. P. et al., Biomimetic material strategies for cardiac tissue engineering, Materials Science and Engineering C, 2011, 31, 503 [51] Prabhakaran M. P. et al., Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering, Biopolymers, 2012, 97, 529 [52] Reinecke H. et al., Survival, integration, and differentiation of cardiomyocyte grafts - A study in normal and injured rat hearts, Circulation, 1999, 100, 193 [53] Rockwood D. N. et al., Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro, Biomaterials, 2008, 29, 4783 [54] Rockwood D. N. et al., Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro, Biomaterials, 2008, 29, 4783 [55] Scorsin M. et al., Does transplantation of cardiomyocytes improve function of infarcted myocardium, Circulation, 1997, 96, 188 [56] Shamblott M. J. et al., Derivation of pluripotent stem cells from cultured human primordial germ cells, Proceedings of the National Academy of Sciences, 1998, 95, 13726 [57] Shen X. D. et al., Coronary arteries angiogenesis in ischemic myocardium: Biocompatibility and biodegradability of various hydrogels, Artificial Organs, 2009, 33, 781 [58] Shina M. et al., Contractile cardiac grafts using a novel nanofibrous mesh, Biomaterials, 2004, 25, 3717 [59] Skarja G. A. et al., Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Biomaterials Science Polymer Edition, 1998, 9, 271 [60] Soonpaa M. H. et al., Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium, Science, 1994, 264, 98 [61] Stevens M. P., Polymer Chemistry an Introduction, 1999, p.50 [62] Thomson J. A. et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, 282, 1145 [63] Thomson J. A. et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, 282, 1145 [64] Tomita S. et al., Autologous transplantation of bone marrow cells improves damaged heart function, Circulation, 1999, 100, 247 [65] van Amerongen M. J. et al., The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium, Biomaterials, 2006, 27, 2247 [66] Wall S. T. et al., Theoretical impact of the injection of material into the myocardium - A finite element model simulation, Circulation, 2006, 114, 2627 [67] Wong S. C. et al., Effect of fiber diameter on tensile properties of electrospun poly(3-caprolactone), Polymer, 2008, 49, 4713 [68] Woo G. L. Y. et al., Synthesis and characterization of a novel biodegradable antimicrobial polymer, Biomaterials, 2000, 21, 1235 [69] Yu D. G. et al., Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers, Acta Biomaterialia, 2013, 9, 5665 [70] Yu J. s. et al., The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model, Biomaterials, 2009, 30, 751 [71] Zdrahala R. J. et al., Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future, Journal of Biomaterials Applications, 1999, 14, 67 [72] Zhang M. et al., Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies, Journal of Molecular and Cellular Cardiology, 2001, 33, 907 [73] Zimmermann W. H. et al., Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nature Medicine, 2006, 12, 452 [74] Zong X. et al., Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials, 2005, 26, 5330 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61233 | - |
| dc.description.abstract | 心肌梗塞與充血性心臟衰竭為死亡率極高的心血管疾病,然而,隨著生醫材料的開發與應用,心臟組織工程支架逐漸成為重要的治療策略。心臟組織工程支架需有以下要求,包含多孔性,彈性,生物相容性和與心肌組織相似的生物機械性等。靜電紡絲是一種具發展潛力的技術,其所製造的奈米纖維在結構上與自然的細胞外基質結構相似,並且具有極高的表面積與體積比和相互連通的孔洞。在這篇論文中,我們將呈現我們成功利用靜電紡絲技術開發出以聚氨酯/乙基纖維素混合物為材料的組織工程支架。藉由調控與優化靜電紡絲的操作參數,我們可以控制並得到直徑100奈米至1微米的纖維。與純聚氨酯相比,適當的聚氨酯/乙基纖維素比例可提高組織工程支架的機械性能,包括拉伸強度和楊氏係數,且同時保有良好的伸長率和彈性。此外,在體外培養試驗中,H9C2細胞(大鼠心肌細胞株)在所有比例的組織工程支架上皆有隨時間增長之趨勢,顯示此材料具生物相容性。我們也系統性地探討纖維寬度對於細胞生長的影響,藉由培養H9C2細胞株在不同直徑纖維的組織工程支架上,我們發現纖維狀的結構比起平面的培養皿可促進較多的細胞貼附,且較寬的纖維可更明顯的發現細胞擴展的速度較快,顯示其在心臟組織工程支架的應用上更具適用性。
除了隨機排列的組織工程支架外,我們藉由滾動式的收集器引導纖維,並成功開發出具有特定方向性排列的組織工程支架。此具有方向性排列的組織工程支架較隨機排列的組織工程支架展現出更佳的機械性能,包括較高的楊氏係數和拉伸強度。此外,方向性排列的組織工程支架亦加強了H9C2細胞的增生能力,並且引導細胞往纖維的方向生成長條狀形態,此形態與隨機排列的組織工程支架上所觀察到的平面細胞形態有相當大的差異。本論文所呈現的研究成果,對目前的生物支架技術有顯著的提升與貢獻,期待於本論文所開發出的生物支架可於未來被實際運用於心臟組織工程上。 | zh_TW |
| dc.description.abstract | Myocardial infarction (MI) and congestive heart failure (CHF) are major cardiovascular diseases with high mortality rates. Via the discovery and application of biomaterials, cardiac patch tissue engineering has become an advanced strategy for surgical intervention of MI and CHF therapy. The criteria of scaffold for cardiac patch tissue engineering include porous, elastic, biocompatible and mimic biomechanical properties of the cardiac muscle. Electrospin is a promising technique to fabricate nanofibrous scaffold which is structurally similar to the native extracellular matrix (ECM) and provides high surface‐to‐volume ratios with interconnected pores. In this thesis, we demonstrate a successfully developed scaffold utilizing electrospin technique based on polyurethane / ethyl cellulose (PU/EC) blends. The fiber diameters can be well controlled in the range of 100 nm to 1 μm by rationally tuning the processing parameters of electrospin. The developed scaffold features significant mechanical properties and biocompatibility. Namely, as compared to the pristine PU scaffold, adjusting the blending ratio of PU/EC could enhance the mechanical properties including tensile strength and Young’s modulus but still remain high elongation and flexibility. Additionally, the in vitro test of culturing the H9C2 cells (rat cardiomyocyte cell lines) on scaffolds showed the increasing cell amount over time in all types of scaffolds, indicating their good biocompatibility. Furthermore, the relation between fiber width and cell growth was also systematically studied by culturing H9C2 cells on scaffolds with different diameters. The fibrous structure was found to facilitate the cell adhesion and spread in the beginning 4 hours as compared to the flat tissue-culture polystyrene (TCPS). More pronounced spread rate was discovered in the scaffold with wider fibers, which suggests the more potential applicability in cardiac patch tissue engineering.
In additional to the scaffold with randomly oriented fibers, we also successfully developed scaffold with aligned fibers by employing a rolling collector which guided the fiber deposition. Such scaffold showed considerably improved mechanical properties including higher Young’s modulus and tensile strength as compared to the isotropic one. The proliferation of H9C2 cell was also enhanced on aligned fibers with elongated morphology along fiber direction which is distinctive to the flat morphology observed in scaffolds with isotropic fibers. The present thesis extends the current technology in the scaffold development which possesses promising potential in realistic application of cardiac patch tissue engineering. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:54:51Z (GMT). No. of bitstreams: 1 ntu-102-R00450008-1.pdf: 6598532 bytes, checksum: 7616508c5dde4983f312cb2913d895f2 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 文獻回顧 1 1.1 前言 1 1.2 組織工程簡介 2 1.2.1 心肌組織工程之細胞來源 2 1.2.2 心肌組織工程之框架材料與結構 7 1.3 靜電紡絲簡介與原理 12 1.4 聚氨酯 14 1.5 乙基纖維素 15 1.6 研究動機與目的 16 第二章 實驗材料與方法 17 2.1 實驗材料與儀器 17 2.1.1 實驗藥品 17 2.1.2 實驗儀器 18 2.2 聚氨酯和乙基纖維素的基本物性測量 19 2.2.1 凝膠滲透層析 19 2.2.2 高分子溶液黏度測試 20 2.2.3 傅立葉轉換紅外線光譜分析 23 2.2.4 示差掃瞄熱分析儀 23 2.3 靜電紡絲組織框架製備 24 2.3.1 高分子溶液配置 24 2.3.2 靜電紡絲 24 2.4 組織框架檢測 26 2.4.1 PH值測試 26 2.4.2 細胞培養 26 2.4.3 生物相容性測試 26 2.4.4 免疫螢光染色 28 2.4.5 靜態拉伸測試 29 2.4.6 掃描式電子顯微鏡 30 第三章 結果與討論 31 3.1 聚氨酯和乙基纖維素的基本物性 31 3.1.1 分子量 31 3.1.2 高分子溶液黏度 33 3.1.3 市售聚氨酯之化學結構分析 34 3.1.4 熱分析 35 3.2 靜電紡絲參數調控纖維寬度 37 3.3 pH值 42 3.4 組織框架的生物相容性測試 43 3.5 纖維寬度對心肌細胞生長影響 44 3.6 組織框架之機械性質 47 3.7 纖維排列結構對心肌細胞生長影響 52 第四章 結論 56 第五章 建議與未來工作 57 參考文獻 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 心肌梗塞 | zh_TW |
| dc.subject | myocardial infarction | en |
| dc.subject | tissue engineering | en |
| dc.subject | electrospin | en |
| dc.title | 以靜電紡絲技術製作聚氨酯/乙基纖維素混紡之組織框架應用於心肌組織修復 | zh_TW |
| dc.title | High Strength Polyurethane / Ethyl Cellulose Blended Electrospun Scaffold for Cardiac Tissue Repair | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林唯芳 | |
| dc.contributor.oralexamcommittee | 吳造中,游佳欣 | |
| dc.subject.keyword | 心肌梗塞,組織工程,靜電紡絲, | zh_TW |
| dc.subject.keyword | myocardial infarction,tissue engineering,electrospin, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
