Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61230Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 董成淵(Chen-Yuan Dong) | |
| dc.contributor.author | Chiu-Mei Hsueh | en |
| dc.contributor.author | 薛秋美 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:54:39Z | - |
| dc.date.available | 2023-12-31 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | 1 Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 10, 128-138 (1988).
2 Morishige, N. et al. Second-Harmonic Imaging Microscopy of Normal Human and Keratoconus Cornea. Investigative Ophthalmology & Visual Science 48, 1087-1094 (2007). 3 Tan, H. Y. et al. Multiphoton Fluorescence and Second Harmonic Generation Imaging of the Structural Alterations in Keratoconus Ex Vivo. Investigative Ophthalmology & Visual Science 47, 5251-5259 (2006). 4 Teng, S. W. et al. Multiphoton Autofluorescence and Second-Harmonic Generation Imaging of the Ex Vivo Porcine Eye. Investigative Ophthalmology & Visual Science 47, 1216-1224 (2006). 5 Tan, H. Y. et al. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. J Biomed Opt 12, 024013 (2007). 6 Hodson, S. A. Corneal stromal swelling. Progress in Retinal and Eye Research 16, 99-116 (1997). 7 Ventura, A. C., Walti, R. & Bohnke, M. Corneal thickness and endothelial density before and after cataract surgery. British Journal of Ophthalmology 85, 18 (2001). 8 Schultz, R. O., Glasser, D. B., Matsuda, M., Yee, R. W. & Edelhauser, H. F. Response of the corneal endothelium to cataract surgery. Archives of Ophthalmology 104, 1164-1169 (1986). 9 Holden, B. A., Polse, K. A., Fonn, D. & Mertz, G. W. Effects of cataract surgery on corneal function. Invest Ophthalmol Vis Sci 22, 343-350 (1982). 10 Odin, C. et al. Collagen and myosin characterization by orientation field second harmonic microscopy. Opt Express 16, 16151-16165 (2008). 11 Su, P. J. et al. The discrimination of type I and type II collagen and the label-free imaging of engineered cartilage tissue. Biomaterials 31, 9415-9421, doi:10.1016/j.biomaterials.2010.08.055 (2010). 12 Mohler, W. A., Plotnikov, S. V., Millard, A. C. & Campagnola, P. J. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90, 693-703, doi:DOI 10.1529/biophysj.105.071555 (2006). 13 Stoller, P., Kim, B. M., Rubenchik, A. M., Reiser, K. M. & Da Silva, L. B. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7, 205-214, doi:Doi 10.1117/1.1431967 (2002). 14 Csaki, C., Schneider, P. & Shakibaei, M. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Annals of Anatomy-Anatomischer Anzeiger 190, 395-412 (2008). 15 Myristoleate, C. Alternative therapies for traditional disease states: osteoarthritis. Am Fam Physician 67, 339-344 (2003). 16 Eyre, D. Collagen of articular cartilage. Arthritis research 4, 30-35 (2002). 17 Giannoudis, P. V. & Pountos, I. Tissue regeneration - The past, the present and the future. Injury 36, S2-S5, doi:DOI 10.1016/j.injury.2005.10.006 (2005). 18 Goppert-Mayer, M. Elementary file with two quantum fissures. Ann Phys-Berlin 9, 273-294 (1931). 19 Denk, W., Strickler, J. H. & Webb, W. W. 2-Photon Laser Scanning Fluorescence Microscopy. Science 248, 73-76 (1990). 20 Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of Optical Harmonics. Physical Review Letters 7, 118-119 (1961). 21 Roth, S. & Freund, I. Second harmonic generation in collagen. The Journal of Chemical Physics 70, 1637 (1979). 22 Boyd, R. W. Nonlinear optics. (Academic Pr, 2003). 23 Nye, J. F. Physical properties of crystals: their representation by tensors and matrices. (Oxford University Press, 1985). 24 Roth, S. & Freund, I. Optical 2nd-Harmonic Scattering in Rat-Tail Tendon. Biopolymers 20, 1271-1290 (1981). 25 So, P. T. C., Dong, C. Y., Masters, B. R. & Berland, K. M. T WO-P HOTON E XCITATION F LUORESCENCE M ICROSCOPY. Annual Reviews in Biomedical Engineering 2, 399-429 (2000). 26 Kadler, K. E., Holmes, D. F., Trotter, J. A. & Chapman, J. A. Collagen fibril formation. Biochem J 316, 1-11 (1996). 27 Ramshaw, J. A. M., Shah, N. K. & Brodsky, B. Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides. J Struct Biol 122, 86-91, doi:DOI 10.1006/jsbi.1998.3977 (1998). 28 Shoulders, M. D. & Raines, R. T. Collagen Structure and Stability. Annu Rev Biochem 78, 929-958, doi:DOI 10.1146/annurev.biochem.77.032207.120833 (2009). 29 Forrester, J. V. The eye : basic sciences in practice. 2nd edn, (W.B. Saunders, 2002). 30 Provenzano, P. P. & Vanderby Jr, R. Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biology 25, 71-84, doi:http://dx.doi.org/10.1016/j.matbio.2005.09.005 (2006). 31 Komai, Y. & Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32, 2244-2258 (1991). 32 Roberts, C. R. et al. Ultrastructure and tensile properties of human tracheal cartilage. J Biomech 31, 81-86 (1998). 33 Wachsmuth, L., Soder, S., Fan, Z., Finger, F. & Aigner, T. Immunolocalization of matrix proteins in different human cartilage subtypes. (2006). 34 Han, L., Grodzinsky, A. J. & Ortiz, C. Nanomechanics of the cartilage extracellular matrix. Annual review of materials research 41, 133 (2011). 35 Buckwalter, J. & Mankin, H. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional course lectures 47, 487 (1998). 36 Baum, J. & Brodsky, B. Folding of peptide models of collagen and misfolding in disease. Current opinion in structural biology 9, 122-128 (1999). 37 Lee, H. S. et al. Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng 12, 2835-2841 (2006). 38 Chen, W. L. et al. Multiphoton Imaging and Quantitative Analysis of Collagen Production by Chondrogenic Human Mesenchymal Stem Cells Cultured in Chitosan Scaffold. Tissue Eng Part C-Me 16, 913-920, doi:DOI 10.1089/ten.tec.2009.0596 (2010). 39 Richards, B. & Wolf, E. Electromagnetic Diffraction in Optical Systems .2. Structure of the Image Field in an Aplanatic System. Proc R Soc Lon Ser-A 253, 358-379, doi:DOI 10.1098/rspa.1959.0200 (1959). 40 Chou, C. K. et al. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. J Biomed Opt 13 (2008). 41 Lee, H. S. et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells 21, 190-199 (2003). 42 Koyama, N. et al. Human Induced Pluripotent Stem Cells Differentiated into Chondrogenic Lineage Via Generation of Mesenchymal Progenitor Cells. Stem Cells Dev 22, 102-113, doi:DOI 10.1089/scd.2012.0127 (2013). 43 Rice, W. L., Kaplan, D. L. & Georgakoudi, I. Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation. Plos One 5 (2010). 44 Phillips, J. E., Petrie, T. A., Creighton, F. P. & Garcia, A. J. Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta biomaterialia 6, 12-20 (2010). 45 Maurice, D. M. The cornea and sclera. The Eye 1, 103-115 (1984). 46 Maurice, D. M. The structure and transparency of the cornea. J Physiol 136, 263-286 (1957). 47 Hart, R. W. & Farrell, R. A. Light scattering in the cornea. J. Opt. Soc. Am 59, 766-774 (1969). 48 Muller, L. J., Pels, E. & Vrensen, G. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. British Medical Journal 85, 437 (2001). 49 Quantock, A. J. et al. Small-angle fibre diffraction studies of corneal matrix structure: a depth-profiled investigation of the human eye-bank cornea. J. Appl. Cryst. 40, 335-340 (2007). 50 Meek, K. M. et al. Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Bio J 60, 467-474 (1991). 51 Wang, J., Simpson, T. L. & Fonn, D. Objective Measurements of Corneal Light-Backscatter during Corneal Swelling, by Optical Coherence Tomography. Investigative Ophthalmology & Visual Science 45, 3493 (2004). 52 Meek, K. M. & Fullwood, N. J. Corneal and scleral collagens—a microscopist’s perspective. Micron 32, 261-272 (2001). 53 Kim, Y. L., WalshJr, J. T., Goldstick, T. K. & Glucksberg, M. R. Variation of corneal refractive index with hydration. Physics in Medicine and Biology 49, 859-868 (2004). 54 Meek, K. M., Dennis, S. & Khan, S. Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Bio J 85, 2205-2212 (2003). 55 Leonard, D. W. & Meek, K. M. Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophysical Journal 72, 1382-1387 (1997). 56 Fercher, A. F., Drexler, W., Hitzenberger, C. K. & Lasser, T. Optical coherence tomography-principles and applications. Reports on Progress in Physics 66, 239-303 (2003). 57 Sun, C. K. et al. Higher harmonic generation microscopy for developmental biology. Journal of Structural Biology 147, 19-30 (2004). 58 Yeh, A. T., Nassif, N., Zoumi, A. & Tromberg, B. J. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence. Optics Letters 27, 2082-2084 (2002). 59 Wang, T. J. et al. Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty. J Biomed Opt 13, 034019, doi:10.1117/1.2943156 (2008). 60 Brown, D. J., Morishige, N., Neekhra, A., Minckler, D. S. & Jester, J. V. Application of second harmonic imaging microscopy to assess structural changes in optic nerve head structure ex vivo. Journal of Biomedical Optics 12, 024029 (2007). 61 Radner, W. & Mallinger, R. Interlacing of collagen lamellae in the midstroma of the human cornea. Cornea 21, 598-601, doi:Doi 10.1097/01.Ico.0000022801.81080.27 (2002). 62 Bron, A. J. The architecture of the corneal stroma. British Journal of Ophthalmology 85, 379 (2001). 63 Huang, Y. & Meek, K. M. Swelling studies on the cornea and sclera: the effects of pH and ionic strength. Biophys J 77, 1655-1665 (1999). 64 Castoro, J. A., Bettelheim, A. A. & Bettelheim, F. A. Water gradients across bovine cornea. Invest Ophthalmol Vis Sci 29, 963-968 (1988). 65 Lee, D. & Wilson, G. Non-uniform swelling properties of the corneal stroma. Curr Eye Res 1, 457-461 (1981). 66 Boote, C., Dennis, S., Huang, Y., Quantock, A. J. & Meek, K. M. Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol 149, 1-6 (2005). 67 Meek, K. M., Leonard, D. W., Connon, C. J., Dennis, S. & Khan, S. Transparency, swelling and scarring in the corneal stroma. Eye 17, 927-936 (2003). 68 Richards-Kortum, R. & Sevick-Muraca, E. QUANTITATIVE OPTICAL SPECTROSCOPY FOR TISSUE DIAGNOSIS. Annual Reviews in Physical Chemistry 47, 555-606 (1996). 69 Chen, W.-L. et al. Second harmonic generation χ tensor microscopy for tissue imaging. Appl Phys Lett 94, 183902-183902-183903 (2009). 70 Zhang, J. et al. in Journal of Physics: Conference Series. 012016 (IOP Publishing). 71 Dailey, C. A., Burke, B. J. & Simpson, G. J. The general failure of Kleinman symmetry in practical nonlinear optical applications. Chemical Physics Letters 390, 8-13, doi:http://dx.doi.org/10.1016/j.cplett.2004.03.109 (2004). 72 Su, P. J., Chen, W. L., Chen, Y. F. & Dong, C. Y. Determination of Collagen Nanostructure from Second-Order Susceptibility Tensor Analysis. Biophys J 100, 2053-2062 (2011). 73 Wong, R. S., Follis, F. M., Shively, B. K. & Wernly, J. A. Osteogenesis imperfecta and cardiovascular diseases. The Annals of thoracic surgery 60, 1439-1443 (1995). 74 Liu, X., Wu, H., Byrne, M., Krane, S. & Jaenisch, R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proceedings of the National Academy of Sciences 94, 1852-1856 (1997). 75 DEVEAUD, C. M. et al. Molecular analysis of collagens in bladder fibrosis. The Journal of urology 160, 1518-1527 (1998). 76 ang Cheng, W., ong Yan-hua, R., ing Fang-gang, N. & hang Guo-an, Z. The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology 10, 2524-2529 (2011). 77 Lutz, V. et al. Characterization of fibrillar collagen types using multi‐dimensional multiphoton laser scanning microscopy. International journal of cosmetic science 34, 209-215 (2012). 78 Cox, G. et al. 3-Dimensional imaging of collagen using second harmonic generation. J Struct Biol 141, 53-62, doi:http://dx.doi.org/10.1016/S1047-8477(02)00576-2 (2003). 79 Tiaho, F., Recher, G. & Rouede, D. Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Opt Express 15, 12286-12295 (2007). 80 Kawahara, K. et al. Effect of hydration on the stability of the collagen-like triple-helical structure of [4 (R)-hydroxyprolyl-4 (R)-hydroxyprolylglycine] 10. Biochemistry 44, 15812-15822 (2005). 81 Hongo, C. et al. Average Crystal Structure of (Pro-Pro-Gly) 9 at 1.0. ANGS. Resolution. Polymer journal 33, 812-818 (2001). 82 Fallas, J. A., O'Leary, L. E. & Hartgerink, J. D. Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chemical Society Reviews 39, 3510-3527 (2010). 83 Odin, C., Le Grand, Y., Renault, A., Gailhouste, L. & Baffet, G. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. J Microsc-Oxford 229, 32-38, doi:DOI 10.1111/j.1365-2818.2007.01868.x (2008). 84 Cohen, A. C. Estimation in Mixtures of 2 Normal Distributions. Technometrics 9, 15-&, doi:Doi 10.2307/1266315 (1967). 85 Xu, S., Tai, D., So, P., Yu, H. & Rajapakse, J. Automated Scoring System for Liver Fibrosis Diagnosis with Second Harmonic Generation Microscopy. Australian Journal of Intelligent Information Processing Systems 12 (2010). 86 Cheung, D. T., Benya, P. D., Perelman, N., Dicesare, P. E. & Nimni, M. E. A highly specific and quantitative method for determining type III/I collagen ratios in tissues. Matrix 10, 164-171 (1990). 87 Stock, U. A. & Vacanti, J. P. Tissue engineering: current state and prospects. Annual review of medicine 52, 443-451 (2001). 88 Tuan, R. S., Boland, G. & Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research and Therapy 5, 32-45 (2003). 89 Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74 (1997). 90 Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 (1999). 91 Huang, A. H., Farrell, M. J. & Mauck, R. L. Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 43, 128-136, doi:DOI 10.1016/j.jbiomech.2009.09.018 (2010). 92 LeBaron, R. G. & Athanasiou, K. A. Ex vivo synthesis of articular cartilage. Biomaterials 21, 2575-2587, doi:Doi 10.1016/S0142-9612(00)00125-3 (2000). 93 Steadman, J., Rodkey, W., Briggs, K. & Rodrigo, J. [The microfracture technic in the management of complete cartilage defects in the knee joint]. Der Orthopade 28, 26 (1999). 94 Steadman, J. R., Rodkey, W. G., Singleton, S. B. & Briggs, K. K. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Operative techniques in orthopaedics 7, 300-304 (1997). 95 Chu, S. W. et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11, 3093-3099 (2003). 96 Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. P Natl Acad Sci USA 100, 7075-7080 (2003). 97 Thorpe, S. D. et al. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-β3 induced chondrogenic differentiation. Ann Biomed Eng 38, 2896-2909 (2010). 98 Yamashita, A., Nishikawa, S. & Rancourt, D. E. Identification of five developmental processes during chondrogenic differentiation of embryonic stem cells. Plos One 5, e10998 (2010). 99 Steck, E. et al. Induction of intervertebral disc–like cells from adult mesenchymal stem cells. Stem Cells 23, 403-411 (2005). 100 Rice, W. L., Kaplan, D. L. & Georgakoudi, I. Quantitative biomarkers of stem cell differentiation based on intrinsic two-photon excited fluorescence. J Biomed Opt 12, 060504-060504-060503 (1999). 101 Tuan, R. S. Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat R 427, S105-S117 (2004). 102 Gadjanski, I., Spiller, K. & Vunjak-Novakovic, G. Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage. Stem Cell Rev Rep 8, 863-881, doi:DOI 10.1007/s12015-011-9328-5 (2012). 103 Shum, L. & Nuckolls, G. The life cycle of chondrocytes in the developing skeleton. Arthritis research 4, 94-106 (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61230 | - |
| dc.description.abstract | 非線性光學顯微術近年來常被選取並應用在各種生物影像之研究;此項技術的優點包含光切片的功能,同時可以減低聚焦點外不必要的光破壞,並且加強了掃描影像的深度範圍,因此非常適用於三維活體組織的影像掃描。其中,膠原蛋白在脊椎動物組織內,是含量最豐富的蛋白質之一。因此發展其適當的量測工具並使其可應用於生物物理、生理學、以及生醫工程領域是非常重要的。在此項研究中,我們結合了多光子、二倍頻、以及二階電化率等非線性技術去量測並觀察膠原蛋白在各組織內的結構及成分,並動態的觀察膠原蛋白在軟骨組織工程中的增生情形。
首先利用正向與反向二倍頻訊號觀察眼角膜在正常與水腫情況下,其膠原蛋白結構在大範圍且不同深度的相對變化。實驗觀察後發現,角膜水腫時其膠原蛋白薄層間隙會不規則的增加,同時薄層厚度在後段(深度>200 μm)也會明確的增加,而前段的薄層可能因為其結構上包含較多交錯的膠原蛋白纖維在厚度上並沒有明顯的改變。而此項研究也顯示出二倍頻顯微術可以有效的提供組織內膠原蛋白的結構資訊同時未來也可望被應用在活體上研究角膜水腫的相關議題。 由於電化率可以進一步用來判斷膠原蛋白螺旋角,因此二階電化率顯微術在研究中也被應用作為分辨不同種類膠原蛋白的機制之一。以第一型膠原蛋白為例,我們從大鼠尾腱中量測到第一型膠原蛋白的二階電化率比值為Xzzz/Xzxx=1.41±0.08 ,Xzzz/Xzxx=0.77±0.11;從大鼠氣管軟骨組織量測到的第二型膠原蛋白為Xzzz/Xzxx=1.16±0.13,Xzzz/Xzxx=10.40±0.14;在大鼠皮膚中的第三型膠原蛋白所量測到的二階電化率為Xzzz/Xzxx=1.20±0.14,Xzzz/Xzxx=0.49±0.15。為了更進一步確認所量測到的電化率張量非受到相關激發波長所影響,我們量測了在不同激發波長下第一型與第二型膠原蛋白的電化率比值也證明在此範圍下膠原蛋白的量測是不受共振之影響的。 由於在多數生物組織中,不同型膠原蛋白常共同存在。我們利用高斯混和模型擬合二階電化率在組織中的分佈藉以量測不同型態膠原蛋白在組織中的相對比例。在皮膚組織中,利用二階電化率顯微術量測第一型與第三型膠原蛋白的比例與傳統生化方法量測之結果是非常吻合的。此項方法結合多光子顯微術也成功的觀測到骨隨間葉幹細胞分化成軟骨組織過程中,第二型與第一型膠原蛋白之相對比例隨著時間的變化。因此,多光子、二倍頻、二階電化率等技術之結合顯示其未來應用在偵測生物組織的特性並且即時的觀察組織工程中膠原蛋白的結構的高度發展性。 | zh_TW |
| dc.description.abstract | Nonlinear optical microscopy has been the preferred technique in a wide array of bioimaging applications. Intrinsic optical sectioning, out-of-focus photo damage reduction, and enhanced image depths facilitated three-dimensional imaging of tissues in vivo. Since collagen is the most abundant proteins in vertebrates, developing an imaging technique to study the structure and function of collagen-containing tissues is of significant values in biophysics, physiology, and biomedical engineering. In this thesis, multiphoton, second harmonic generation (SHG), and second order susceptibility (SOS) microscopy were used as to image and study dynamics of collagen structure in different tissues, including collagen production in chondrogenic tissue engineering.
We first utilized SHG microscopy to investigate the structural features of corneal edema by simultaneously collecting forward and backward SHG signals from normal and over-hydrated bovine cornea over a large area and at different depths. For edematous cornea, the uneven expansion in lamellar interspacing and also, increased lamellar thickness in posterior stroma (depth > 200 μm) were identified, while the anterior stroma composed of interwoven collagen architecture remained unaffected. This work demonstrates the capability of SHG imaging in providing morphological information for the investigation of corneal edema biophysics and that this approach may be applied in the evaluation of advancing corneal edema in vivo. Secondly, second order susceptibility (SOS) microscopy was used as a contrast mechanism for distinguishing collagen microstructure. For type I collagen, the SOS ratios, χzzz/χzxx =1.41±0.08 and χxzx/χzxx =0.77±0.11, were obtained from rat tail tendon. χzzz/χzxx =1.16±0.13 and χxzx/χzxx =0.40±0.14 were obtained for type II collagen from rat trachea cartilage. χzzz/χzxx =1.20±0.14 andχxzx/χzxx =0.49±0.15 were obtained for type III collagen from rat skin. Sinceχzzz/χzxx is related to the pitch angle of collagen triple helix, these results imply that the variant or similar chi tensor ratio between different collagen types was mainly dependent on the hetero- or homotrimer structures. Furthermore, experiment to measure the dependence of the SOS on different excitation wavelength (725-875 nm) was performed in collagen I and II, which shows constant SOS ratio and exhibits the off-resonance state of collagen within the wavelength region. Considering different collagen type mixture appeared in most tissues, we introduced a method to determine the relative proportion of collagen type by analyzing the histogram of SOS ratio. The highly coincidence of collagen III/I ratio through SOS and biochemistry analysis was demonstrated in rat skin tissue. Combined multiphoton microscopy (MPM), the qualitative progress of chondrogenic differentiation of human mesenchymal stem cells was followed. The applications of SOS and MPM in biological specimens show the potential of this methodology in detecting the quality of tissues and the structural dynamics of engineered tissues. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:54:39Z (GMT). No. of bitstreams: 1 ntu-102-D95222027-1.pdf: 4385312 bytes, checksum: f2af57bf78e35d4454b74e502910b19f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III Figure List VII Publication list X Chapter 1 Introduction 1 Chapter 2 Principles of Nonlinear Microscopy 6 2.1 Basic principles of second harmonic generation microscopy 6 2.2 Second order susceptibility 7 2.3 Properties of second order susceptibility22 9 2.4 Relationship of SHG intensity and linear polarized excitation 11 2.5 Basic principle of two photon excitation 12 Chapter 3 Central Role of Collagen in Tissue Physiology 15 3.1. Collagen structure and arrangement 15 3.2. Second order susceptibility of collagen fiber 20 Chapter 4 Set Up of Home Build Microscope 22 4.1. Imaging-based microscope 22 4.2. SOS-based microscope 23 4.3. Sample preparation and experimental procedure 26 Chapter 5 SHG Imaging on the Collagen Structural Characterization through Edematous Cornea 30 5.1 Introduction 30 5.2 Results and discussion 32 Chapter 6 Advancement of SHGM - Second Order Susceptibility Microscopy 41 6.1 Frequency-dependent SOS characterization 41 6.1.1 Introduction 41 6.1.2 Results and discussion 41 6.2 Discrimination of type I/III collagen 48 6.2.1 Introduction 48 6.2.2 Results and discussion 49 Chapter 7 Dynamic Observation of Type I/II collagen in Chondrogenic hMSCs by MPM and SOSM 57 7.1. Introduction 57 7.2 Results and discussion 58 Chapter 8 Conclusion 70 Reference... 73 | |
| dc.language.iso | en | |
| dc.subject | 膠原蛋白 | zh_TW |
| dc.subject | 二階極化率 | zh_TW |
| dc.subject | 二倍頻 | zh_TW |
| dc.subject | 多光子顯微術 | zh_TW |
| dc.subject | second harmonic | en |
| dc.subject | collagen:second order susceptibility | en |
| dc.subject | multiphoton microscopy | en |
| dc.title | 利用二倍頻顯微術探討生物組織中膠原蛋白
結構與成分之特性 | zh_TW |
| dc.title | Structural Characterization of Collagen in Tissues by Second Harmonic Generation Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳永芳(Yang-Fan Chen),張顏暉(Yuan-Huei Chang),石明豐(Ming-Feng Shih),朱士維(Shi-Wei Chu),李宣書(Hsuan-Shu Lee) | |
| dc.subject.keyword | 二倍頻,膠原蛋白,二階極化率,多光子顯微術, | zh_TW |
| dc.subject.keyword | second harmonic,collagen:second order susceptibility,multiphoton microscopy, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 4.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
