Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬
dc.contributor.authorHuei-Jyun Huen
dc.contributor.author胡惠鈞zh_TW
dc.date.accessioned2021-06-16T10:54:31Z-
dc.date.available2014-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-09
dc.identifier.citationAberdam D, Gambaro K, Rostagno P, Aberdam E, de la Forest Divonne S,
Rouleau M. 2007. Key role of p63 in BMP-4-induced epidermal commitment
of embryonic stem cells. Cell Cycle 6:291-294.
Bakkers J, Hild M, Kramer C, Furutani-Seiki M, Hammerschmidt M. 2002.
Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a
transcriptional repressor blocking neural specification in the ventral ectoderm.
Dev Cell 2:617–627.
Bienaime F, Prie D, Friedlander G, Souberbielle JC. 2011.Vitamin D metabolism
and activity in the parathyroid gland. Mol Cell Endocrinol 347(1-2):30-41.
Bikle DD. 2004. Vitamin D regulated keratinocyte differentiation. J Cell Biochem
92:436–444
Binswanger U, Helmle-Kolb C, Forgo J, Mrkic B, Muter H. 1993. Rapid
stimulation of Na+/H + exchange by 1,25-dihydroxyvitamin D3; interaction with
parathyroid-hormone-dependent inhibition. Eur J Physiol.
Briggs JP. 2002. The zebrafish: a new model organism for integrative physiology.
Am J Physiol Regul Integr Comp Physiol 282: R3–9.
Chang WJ, Horng JL, Yan JJ, Hsiao CD, Hwang PP. 2009. The transcription
factor, glial cell missing 2, is involved in differentiation and functional
27
regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol
Regul Integr Comp Physiol 296:R1192–R1201.
Chang WJ, Wang YF, Hu HJ, Wang JH, Lee TH, Hwang PP. 2013.
Compensatory regulation of Na+ absorption in zebrafish (Danio rerio). Front
Zool. (in press)
Chen E, Ekker SC. 2004. Zebrafish as a genomics research model. Curr Pharm
Biotechnol 5: 409–413.
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. 2006. HNF factors
form a network to regulate liver-enriched genes in zebrafish. Dev Biol 15: 294(2):
482–96.
Chou MY, Hung JC, Wu LC, Hwang SPL, Hwang PP. 2010. Isotocin controls ion
regulation through regulating ionocyte progenitor differentiation and
proliferation. Cell Mol Life Sci 68(16): 2797–809.
Cruz SA, Chao PL, Hwang PP. 2012. Cortisol promotes differentiation of epidermal
ionocytes through Foxi3 transcription 2 factors in zebrafish (Danio rerio). Comp
Biochem Physiol A Mol Integr Physiol 164(1):249-57.
de Borst MH, de Boer RA, Stolk RP, Slaets JPJ, Wolffenbuttel BHR, Navis G.
2011. Vitamin D Deficiency: Universal Risk Factor for Multifactorial Diseases?
Curr Drug Targets 12:97-106.
Evans DH, Piermarini PM, Choe KP. 2005. The multifunctional fish gill:
dominant site of gas exchange, osmoregulation, acid-base regulation, and
28
excretion of nitrogenous waste. Physiol Rev 85:97–177.
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jonsson ME,
Nelson DR, Stegeman JJ. 2010. Identification and developmental expression of
the full complement of cytochrome P450 genes in Zebrafish. BMC Genomics 11:
643.
Hennings H, Holbrook KA. 1983. Calcium regulation of cell-cell contact and
differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell
Res 143:127–142.
Holick MF. 2007.Vitamin D deficiency. N Engl J Med 357:266-81.
Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP. 2007. Knockdown
of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in
zebrafish (Danio rerio). Am J Physiol 292:R2068–R2076.
Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T. 1983. Regulation of terminal
differentiation of cultured mouse epidermal cells by lα,25-dihydroxyvitamin D3.
J Endocrinol 113: 1950-1957.
Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP. 2007. A positive
regulatory loop between foxi3a and foxi3b is essential for specification and
differentiation of zebrafish epidermal ionocytes. PLoS ONE 2:e302.
Hwang PP, Perry SF. 2010. Ionic and acid–base regulation. In:Perry SF, Ekker M,
29
Farrell AP, Brauner CJ (eds) Fish physiology. Elsevier Academia Press, San
Diego pp. 311–343. 608
Janicke M, Carney TJ, Hammerschmidt M. 2007. foxi3 transcription factors and
Notch signaling control the formation of skin ionocytes from epidermal
precursors of the zebrafish embryo. Dev Biol 307:258–271.
Ko B, Cooke LL, Hoover RS. 2011. Parathyroid hormone (PTH) regulates the
sodium chloride cotransporter via Ras guanyl releasing protein1 (Ras-GRP1) and
extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase
(MAPK) pathway. Transl Res 158(5):282-9.
Liao BK, Deng AN, Chen SC, Chou MY, Hwang PP. 2007. Expression and water
calcium dependence of calcium transporter isoforms in zebrafish gill
mitochondrion-rich cells. BMC Genomics 8:354.
Lieben L, Carmeliet G, Masuyama R. 2011. Calcemic actions of vitamin D: effects
on the intestine, kidney and bone of Medical Sciences. Best Pract Res Clin
Endocrinol Metab 25 561–572
Lin CH, Su CH, Tseng DY, Ding FC, Hwang PP. 2012. Action of vitamin D and
the Receptor, VDRa, in calcium handling in zebrafish (Danio rerio). PLoS One
7(9):e45650.
Lin CH, Tsai IL, Su CH, Tseng DY, Hwang PP. 2011. Reverse effect of
30
mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via
glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS One
6(8):e23689.
Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K, Sotiropoulou
G, Diamandis EP, Hudson TJ, White JH. 2002. Expression profiling in
squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog
EB1089 signaling on cell proliferation, differentiation, and immune system
regulation. Mol Endocrinol 16(6):1243–1256.
Lock EJ, Ornsrud R, Aksnes L, Spanings FA, Waagbo R, Flik G. 2007 The
vitamin D receptor and its ligand 1alpha,25-dihydroxyvitamin D3 in Atlantic
salmon (Salmo salar). J Endocrinol 193(3): 459–71.
Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR,
Cordat E, Alexander RT. 2012. The epithelial sodium/proton exchanger,
NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol
Renal Physiol 302: F943–F956.
Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR,
Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS,
Lorenz JN, Shull GE. 1998. Renal and intestinal absorptive defects in mice
lacking the NHE3 Na+/H+exchanger. Nat Genet 19:282–285.
31
Sundell K, Norman AW, Bjornsson BT. 1993. 1,25(OH)2 vitamin D3 increases
ionized plasma calcium concentrations in the immature Atlantic cod, Gadus
morhua. Gen Comp Endocrinol 91(3): 344–351.
Swarup K, Das VK, Norman AW. 1991. Dose-dependent vitamin D3 and 1,25-
dihydroxyvitamin D3-induced hypercalcemia and hyperphosphatemia in male
cyprinoid Cyprinus carpio. Comp Biochem Physiol A Physiol 100(2): 445–447.
Tseng DY, Chou MY, Tseng YC, Hsiao CD, Huang CJ, Kaneko T, Hwang PP.
2009. Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio)
embryo. Am J Physiol Regul Integr Comp Physiol 296: R549-R557.
Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP. 2009. Role of SLC12A10.2,
a Na-Cl cotransporter-like protein, in a Cl- uptake mechanism in zebrafish
(Danio rerio). Am J Physiol 296:R1650–R1660.
Wills MR. 1971. Value of plasma chloride concentration and acid-base status in the
differential diagnosis of hyperparathyroidism from other causes of
hypercalcaemia. J clin Path 24: 219-227.
Xie Z, Komuves L, Yu QC, Elalieh H, Ng DC, Leary C, Chang S, Crumrine D,
Yoshizawa T, Kato S, Bikle DD. 2002. Lack of the vitamin D receptor is
associated with reduced epidermal differentiation and hair follicle growth. J
Invest Dermatol 118:11–16.
32
Yan JJ, Chou MY, Kaneko T, Hwang PP. 2007. Gene expression of Na+/H+
exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and
acidic environments. Am J Physiol 293:C1814–C1823.
Zachos NC, Tse M, Donowitz M. 2005. Molecular physiology of intestinal Na+/H+
exchange. Annu Rev Physiol 67:411-43.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61228-
dc.description.abstract淡水魚類生存在離子濃度多變的淡水環境中,因此淡水魚要如何適應離子激烈變動的環境對其是一大課題。維生素D3為一固醇類化合物,在生物體上也扮演賀爾蒙的角色,影響許多生理功能。前人研究指出維生素D3在哺乳動物的離子調節上扮演一定重要角色,然而在淡水魚類中,維生素D3是否在對不同離子的調節上扮演著重要的角色仍然不是很清楚。
本篇主要是探討維生素D3是否能夠影響魚類對不同離子的調節,此外魚類對離子調節的功能主要是由成魚的鰓或幼魚體表上的離子細胞所執行,因此本篇也進一步探討維生素D3是否能夠影響魚類離子細胞的增生或是分化進而影響離子吸收功能 。由於斑馬魚在分子生物學、發育學及基因體學資訊上的優勢,在本篇文章中以斑馬魚為模式動物進行探討維生素D3對魚類離子調節的影響。
在本文中發現浸泡維生素D3的斑馬魚仔魚,其體內鈉、鈣及氯離子含量皆顯著增加。此外與這些離子運輸相關的運輸蛋白基因表現也都會受到維生素D3浸泡的刺激。進一步研究維他命D3是經由何種方式影響斑馬魚離子調節,結果發現維生素D3經由影響離子細胞分化基因foxi3a的表現進而刺激斑馬魚仔魚的離子細胞分化,並且維生素D3可能經由vitamin D3-VDR signaling的途徑來調控離子吸收功能與細胞分化。
綜合本篇研究結果,維生素D3經由刺激離子細胞分化基因的表現,促使斑馬魚仔魚表皮幹細胞分化為離子細胞,因而影響離子細胞數量以及離子運輸蛋白的基因表現量,從而調控離子的吸收。
zh_TW
dc.description.abstractFish face harsh and fluctuating ion composition in fresh water, therefore it is
important that fish have to develop the regulatory mechanisms for ion homeostasis.
Vitamin D3 is a group of fat-soluble secosteroids. It functions as a hormone and
participates in many physiological reactions in animals.
Vitamin D3 has been documented to be an endocrine of regulating ion uptake in
mammals, however, the role of vitamin D3 on the different ions is still unclear in
teleosts. In the present study, we focus on whether vitamin D3 controls the regulation
of different ions. Since ionocytes primarily regulates ion transport in embryonic skin
and/or adult gills of fish, we further explore whether vitamin D3 affects the
proliferation or differentiation of ionocytes in teleosts. Plenty of genetic databases and
mutants as well as the applicability of many molecular/cellular physiological
approaches are advantages in using zebrafish (Danio rerio); a good model to
investigate the molecular physiological mechanisms of epithelial ion uptake by
vitamin D3 in teleosts.
First, we observed whole-body content of Ca、Na and Cl as well as the expressions
of ionocyte-related genes were up-regulated after vitamin D3 treatment. Subsequently,
we further study the regulatory mechanism for ionocytes by vitamin D3. The data
showed that vitamin D3 stimulated the differentiation of ionocytes by increasing the
4
expression of foxi3a, and the ionic regulation by vitamin D3 were mediated by vitamin
D3-VDR signaling in zebrafish.
Taken together, we demonstrated that vitamin D3controls the regulation of
ionocytes differentiation through modulating activities of foxi3a to increase ionocyte
densities, as well as the expressions of ion transporters and ultimately regulate the
functions of ionocytes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:54:31Z (GMT). No. of bitstreams: 1
ntu-102-R00b45005-1.pdf: 7230094 bytes, checksum: f6b2c984d628d2dbfec89f8e57922b2b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 1
摘要…………………………………………………………………………………. ..2
Abstract...……………………………………………………………………………. .3
目錄……………………………………………………………………………………5
前言……………………………………………………………………………………8
維生素D………………………………………………………………………….8
維生素D 與魚類離子調節………………………………………………………8
魚類離子細胞分化與維生素D的影響…..…………………………………….10
以斑馬魚為模式物種研究內分泌調控離子吸收機制..………………………11
研究目的…..……………………………………………………………………11
材料與方法…..………………………………………………………………………13
實驗動物…..……………………………………………………………………13
維生素D3 浸泡實驗…..………………………………………………………..13
體內總鈉、鈣含量測定…..……………………………………………………13
體內總氯含量測定………..……………………………………………………13
RNA 萃取…….…..……………………………………………………………..14
反轉錄聚合酶連鎖反應…..……………………………………………………14
即時定量聚合酶連鎖反應……..………………………………………………14
全胚胎原位雜合………..………………………………………………............15
全胚胎免疫細胞螢光染色 ……..……………………………………………..15
顯微注射反義嗎啉基寡核苷酸…..……………………………………………16
統計分析……………………..…………………………………………………16
結果…………..………………………………………………………………………18
浸泡維生素D3 後對斑馬魚仔魚體內之離子含量的影響…...………………..18
浸泡維生素D3 後對斑馬魚仔魚離子細胞相關基因表現量的影響……...…..18
6
浸泡維生素D3 後對斑馬魚仔魚離子細胞標記基因表現細胞密度的影響….18
浸泡維生素D3 後對斑馬魚仔魚離子細胞之細胞密度的影響………….……18
浸泡維生素D3 後對斑馬魚仔魚表皮幹細胞增殖及離子細胞分化的影響….19
注射VDR MO 後浸泡維生素D3對斑馬魚仔魚表皮離子細胞的影響………19
注射foxi3a/b MO 後浸泡維生素D3 對斑馬魚仔魚表皮離子細胞的影響…..20
討論…………………………………………………………………………………..21
維生素D3 參與斑馬魚鈣、鈉與氯離子吸收作用…………………………….21
維生素D3 經由調控離子細胞的分化參與離子吸收作用…………………….23
維生素D3 與VDR 共同調控斑馬魚的離子吸收..………………………….....24
參考文獻……………………………………………………………………………..26
附表…………………………………………………………………………………..33
表一、即時定量聚合酶連鎖反應實驗所使用之引子序列…………………..33
附圖…………………………………………………………………………………..34
圖一、浸泡維生素D3 對斑馬魚仔魚體內之離子含量影響………………….34
圖二、浸泡維生素D3 對斑馬魚仔魚離子細胞相關基因表現量的影響……..35
圖三、浸泡維生素D3 對斑馬魚仔魚atp6v1a 基因表現細胞之細胞密度的
影響……………………………………………………………………..36
圖四、浸泡維生素D3 對斑馬魚仔魚ecac 基因表現細胞之細胞密度的影
響………………………………………………………………………..37
圖五、浸泡維生素D3 對斑馬魚仔魚slc12a10.2 基因表現細胞之細胞密度
的影響……………………………………………….…….……………38
圖六、浸泡維生素D3 對斑馬魚仔魚HR 細胞之細胞密度的影響…..……...39
圖七、浸泡維生素D3 對斑馬魚仔魚NaR 細胞之細胞密度的影響…….…...40
圖八、浸泡維生素D3 對斑馬魚仔魚NCC 細胞之細胞密度的影響…..……41
圖九、浸泡維生素D3 對斑馬魚仔魚P63 表現細胞之細胞密度的影響….....42
7
圖十、浸泡維生素D3 對斑馬魚仔魚foxi3a 表現細胞之細胞密度的影響.......43
圖十一、注射維生素D3 受器(VDR)MO 後浸泡維生素D3 對斑馬魚仔魚
atp6v1a 基因表現細胞之細胞密度的影響……….................................44
圖十二、注射維生素D3 受器(VDR)MO 後浸泡維生素D3 對斑馬魚仔魚
slc12a10.2 基因表現細胞之細胞密度的影響………............................45
圖十三、注射維生素D3 受器(VDR)MO 後浸泡維生素D3 對斑馬魚仔魚
foxi3a 基因表現細胞之細胞密度的影響…………………..………...46
圖十四、共同注射foxi3a 及foxi3b MO (foxi3a/b MO)後浸泡維生素D3
斑馬魚仔魚atp6v1a 表現細胞之細胞密度的影響……..……………47
圖十五、共同注射foxi3a 及foxi3b MO (foxi3a/b MO)後浸泡維生素D3 對
斑馬魚仔魚ecac 表現細胞之細胞密度的影響…………….….…….48
圖十六、共同注射foxi3a 及foxi3b MO (foxi3a/b MO)後浸泡維生素D3 對
斑馬魚仔魚slc12a10.2 表現細胞之細胞密度的影響…….….……..49
dc.language.isozh-TW
dc.subjectfoxi3azh_TW
dc.subject斑馬魚zh_TW
dc.subject離子細胞zh_TW
dc.subject維生素D3zh_TW
dc.subjectvitamin D3en
dc.subjectionocyteen
dc.subjectzebrafishen
dc.subjectfoxi3aen
dc.title維生素D3調控斑馬魚表皮離子細胞分化的機制zh_TW
dc.titleControl of vitamin D3 on ionocyte differentiation in
zebrafish (Danio rerio) embryos
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張清風,林豊益,曾庸哲
dc.subject.keyword維生素D3,離子細胞,斑馬魚,foxi3a,zh_TW
dc.subject.keywordvitamin D3,ionocyte,zebrafish,foxi3a,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2013-08-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
7.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved