請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國泰(Kuo-Tay Chen) | |
| dc.contributor.author | I-Hsuan Lin | en |
| dc.contributor.author | 林宜萱 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:54:23Z | - |
| dc.date.available | 2015-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | 參考文獻
一、 中文文獻 古倫維、陳信希,2009,「中文意見分析之概況、技術與應用」,計算語言學學會 通訊,20卷5期,頁5-20。 沈中華與李建然,2000,事件研究法:財務與會計實證研究必備,台北市:華泰 文化。 周濟群、戚玉樑、曾建勛,2012,「以詞彙表為基礎的知識本體雛型建構研究—以「公司治理」領域知識為例」,圖書資訊學研究,6卷2期,頁37-81 莊友良、曾建勛、陳君銘、李英宗、王毅新,2012,「基於文字探勘技術的本體論學習方法研究—以理財相關報導為例」,長庚科技學刊,17期,頁39-52。 游正和、黃挺豪、陳信希,2012,「領域相關詞彙極性分析及文件情緒分類之研 究」,計算語言學學會通訊,17卷4期,頁33-48。 二、 英文文獻 Ahmad, K., Oliveira, P. C. F. D., Manomaisupat, P., Casey, M. and Taskaya, T. 2002. Description of events: An analysis of keywords and indexical names. Proceedings of the third international conference on language resources and evaluation, LREC 2002: Workshop on event modelling for multilingual document linking, 29-35. Bennett, J. A., Sias, R. W. and Starks, L. T. 2003. Greener pastures and the impact of dynamic institutional preferences, Review of Financial Studies, 16(4): 1203–1238. Bracewell, D. B. 2008. Semi-Automatic Creation of an Emotion Dictionary Using WordNet and its Evaluation. Proceedings of the IEEE conference on Cybernetics and Intelligent Systems, 21-24 . Chisholm, E. and Kolda T. G. 1999. New term weighting formulas for the vector space method in information retrieval, Technical Report Number ORNL-TM-13756, Oak Ridge National Laboratory, Oak Ridge, TN. Jurafsky, D. and Martin, J. H. 2009. Speech and Language Processing, Prentice Hall, Upper Saddle River, NJ. Kamesaka, A., Nofsinger J. R. and Kawakita, H. 2003. Investment Patterns and Performance of Investor Groups in Japan, Pacific-Basin Finance Journal, 11(1): 1-22. Kang, J. K. and Stulz R. M., 1997. Why Is There a Home Bias? An Analysis of Foreign Portfolio Equity Ownership in Japan, Journal of Financial Economics, 46(1): 3-28. Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D. and Allan, J. 2000.Mining of concurrent text and time series. In: Proceedings of the 6th international conference on knowledge discovery and data mining, 37-44. Loughran, T. and Mcdonald, B. 2011. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of finance, 1: 35-65 Manning, C. D. and Schutze, H. 2003. Foundations of Statistical Natural Language Processing, USA Cambridge, MA: MIT Press. Mittermayer, M. A. 2004. Forecasting intraday stock price trends with text mining techniques. Proceedings of the 37th Hawaii international conference on system sciences, 64-73. Pang, B. and Lee, L. 2008. Opinion Mining and Sentiment Analysis. Information Retrieval, 2(1-2):1-135. Steinberger, J., Ebrahim, M., Ehrmann, M., Hurriyetoglu, A., Kabadjov M., Lenkova, P., Steinberger, R., Tanev, H., Vazquez, S. and Zavarella, V. 2012. Creating sentiment dictionaries via triangulation. Decision Support Systems, 53: 689-694 Sullivan, D. 2001. Document warehousing and text mining. Canada: Wiley Computer Publishing. Yang, J., Bracewell, D. B., Ren, F. and Kuroiwa, S. 2008. The Creation of a Chinese Emotion Ontology Based on HowNet. Engineering Letters, 16(1):166-171. NTUSD (National Taiwan University Semantic Dictionary) http://nlg18.csie.ntu.edu.tw:8080/opinion/pub1.html Accessed Jan. 12, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61226 | - |
| dc.description.abstract | 近年來眾多研究探討文字資訊(如公司年報致股東報告書、新聞報導、分析師報告等)對於投資人決策之影響。這些研究所採取之方法中,內容分析法為最主要者之一。
內容分析法多根據情緒詞典衡量文字資訊所隱含之悲觀或樂觀情緒(sentiment),因此良好之情緒詞典實為文字資訊分析最之根本。然而檢視當前之中文情緒辭典,缺乏專門針對財經領域所編撰。本研究之目的即在建置一專門應用於財經領域之中文情緒辭典。 本研究以Loughran and McDonald所建置之財經領域英文情緒辭典為基礎,首先將其翻譯成中文,並以電腦比對中文新聞進行篩選。同時,進一步以群組共識之方式擴編與刪減,編製成中文財經領域之情緒辭典。 為驗證此一中文辭典之有效性,本研究進一步選取兩百篇新聞報導,分別以本研究所建立之辭典與台大資工系情緒辭典,衡量這些新聞報導的情緒分數,並以之與股票之表現進行相關與迴歸分析。結果發現,依據本研究所建立之辭典確實可以有效衡量新聞報導所隱含之樂(悲)關情緒。 | zh_TW |
| dc.description.abstract | Many studies have investigated the effect of textual information (e.g. MD&A, news reports, analyst reports) on investors’ decision. One of the most important methods adopted by these studies is content analysis.
Content analysis usually tries to measure the sentiment contained in textual information based on some sentiment dictionary; therefore a good sentiment dictionary is the foundation for content analysis. However, currently there is no such Chinese dictionary in the area of economics and finance. This study intends to fill this gap by building a Chinese economic/finance sentiment dictionary. Our dictionary is based on the Englished economic/finance sentiment dictionary build by Loughran and McDonald. We first translate the English economic/finance sentiment dictionary into Chinese. We the use computer to calculate the number of times each word appear in 100 selected news reports. We further manually extend and remove some words by using a group consensus method. In order to verify the validity of our dictionary, we select 200 news reports as a sample and measure the sentiment of these news reports using our dictionary and the dictionary built by the department of computer science at National Taiwan Universituy (NTU). We then use correlation and regression analyses to investigate the relationship between the sentiment scores and stock performance. The analysis results show that our dictionary can effectively measure the sentiment of news report and outperforms the NTU dictionary. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:54:23Z (GMT). No. of bitstreams: 1 ntu-102-R00722052-1.pdf: 964588 bytes, checksum: dac7dac54fa178212b08355ab5a9ea24 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究架構 3 第二章 文獻探討 5 第一節 文字探勘 5 第二節 新聞資料於股價預測之相關研究 6 第三節 建置情緒辭典之相關研究 7 第三章 研究方法與步驟 9 第一節 財經領域情緒辭典之編撰 9 第二節 財經領域情緒辭典有效性之證明 19 第四章 研究結果與分析 28 第一節 敘述性統計 28 第二節 相關性分析 32 第三節 迴歸分析 35 第五章 結論與建議 48 第一節 研究結論 48 第二節 研究限制 50 第三節 研究建議 51 表目錄 表 4-1 敘述性統計………………………………………………………… 29 表 4-2 敘述性統計………………………………………………………… 30 表 4-3 相關係數分析………………………………………………………… 33 表 4-4 相關係數分析………………………………………………………… 34 表 4-5 迴歸模型…………………………………………………………… 36 表4-6 多元迴歸分析……………………………………………………… 37 表4-7 多元迴歸分析……………………………………………………… 38 表 4-8 多元迴歸分析………………………………………………………38 表 4-9 多元迴歸分析………………………………………………………39 表 4-10多元迴歸分析………………………………………………………40 表 4-11多元迴歸分析………………………………………………………42 表 4-12多元迴歸分析………………………………………………………43 表4-13多元迴歸分析………………………………………………………43 表 4-14多元迴歸分析………………………………………………………44 表 4-15多元迴歸分析………………………………………………………45 圖目錄 圖 1-1本研究之流程架構…………………………………………………… 4 圖 2-1資訊對事件、新聞、股價之互動關係圖……………… 6 圖 3-1未置入新聞時的Article分頁……………………………… 11 圖 3-2置入新聞後的Article分頁…………………………………… 12 圖 3-3 Article分頁裡無文章狀態下之Main分頁……… 12 圖 3-4 Article分頁裡有文章狀態下之Main分頁……… 13 圖 3-5 Article分頁裡無文章狀態下之Tally分頁…… 13 圖 3-6 Article分頁裡有文章狀態下之Tally分頁…… 14 圖 3-7標記正面詞彙與負面詞彙後之文章………………………… 16 圖 3-8第五階段之統計頁面…………………………………………………… 17 圖 3-9第六階段之圖示…………………………………………………………… 18 | |
| dc.language.iso | zh-TW | |
| dc.subject | 文字探勘 | zh_TW |
| dc.subject | 情緒分析辭典 | zh_TW |
| dc.subject | 財經領域情緒辭典 | zh_TW |
| dc.subject | sentiment dictionaries | en |
| dc.subject | text mining | en |
| dc.subject | sentiment dictionary of finance and economics | en |
| dc.title | 財經領域情緒辭典之建置與其有效性之驗證-以財經新聞為元件 | zh_TW |
| dc.title | Creating and Verifying Sentiment Dictionary of Finance and Economics via Financial News | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林世銘,黃美祝 | |
| dc.subject.keyword | 情緒分析辭典,文字探勘,財經領域情緒辭典, | zh_TW |
| dc.subject.keyword | sentiment dictionaries,text mining,sentiment dictionary of finance and economics, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 會計學研究所 | zh_TW |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 941.98 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
