請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良正 | |
| dc.contributor.author | Keng-Yu Chang | en |
| dc.contributor.author | 張耿毓 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:53:28Z | - |
| dc.date.available | 2015-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | Foss, F. K. (1958). “Coordinates which uncouple the linear dynamic systems”, Journal of Applied Mechanics, ASME, 24, 361-364.
Caughey, T. K. and O’Kelly, M. E. J. (1965). “Classical normal modes in damped linear dynamic systems”, Journal of Applied Mechanics, ASME, 32, 583-588. Lancaster, P. (1966). Lambda-matrices and vibrating systems, Pergamon Press, Oxford, New York. Igusa, T., Der Kiurghian, A. and Sackman, J. L. (1984). “Modal decomposition method for stationary response of non-classically damped systems”, Earthquake Engineering and Structural Dynamics, 12, 121-136. Veletsos, A. S. and Ventura, C. E. (1986). “Modal analysis of non-classically damped linear systems”, Earthquake Engineering and Structural Dynamics, 14, 217-243. Gupta, A. K. and Jaw, J.-W. (1986). “Seismic response of nonclassically damped systems”, Nuclear Engineering and Design, 91, 153-159. Gupta, A. K. (1992). Response spectrum method in seismic analysis and design of structures, CRC Press. Zhang, R. H. and Soong, T. T. (1992). “Seismic design of viscoelastic dampers for structural application.”, Journal of Structural Engineering, ASCE, 118(5), 1375-1392. Lallement, G. and Inman, D. J. (1995). “A tutorial on complex eigenvalues”, In Proceedings of 13th International Modal Analysis Conference, Nashville, TN, 490-495. Tisseur, F. and Meerbergen, K. (2001). “The quadratic eigenvalue problem”, SIAM Review, 43(2), 235-286. Lopez Garcia, D. (2001). “A simple method for the design of optimal damper configurations in MDOF structures”, Earthquake Spectra , 17(3), 387-398. Lopez Garcia, D. and Soong, T. T. (2002). “Efficiency of a simple approach to damper allocation in MDOF structures”, Journal of Structural Control, 9(1), 19-30. Zhou, X. Y., Yu, R. F. and Dong, D. (2004). “Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF systems”, Journal of Earthquake Engineering, 8(4), 597-641. Zhou, X. Y., Yu, R. F. and Dong, L. (2004). “The complex-complete-quadratic- combination (CCQC) method for seismic responses of non-classically damped linear MDOF system”, Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada. Yu, R. F. and Zhou, X. Y. (2006). “Complex mode superposition method for non-classically damped linear system with over-critical damping peculiarity”, Journal of Building Structures, 27(1), 50-59. Inman, D. J. (2006). Vibration with control, John Wiley & Sons. Chopra, A. K. (2007). Dynamics of Structures: Theory and applications to earthquake engineering , third edition, Prentice-Hall. Lin, J. L. and Tsai, K. C. (2008). “Seismic analysis of two-way asymmetric building systems under bi-directional seismic ground motions”, Earthquake Engineering and Structural Dynamics, 37, 305-328. Lin, J. L. and Tsai, K. C. (2008). “Seismic analysis of non proportionally damped two-way asymmetric elastic buildings under bi-directional seismic ground motions”, Journal of Earthquake Engineering, 12, 1139-1156. Song, J., Chu, Y.-L., Liang, Z. and Lee, G. C. (2008). “Modal analysis of generally damped linear structures subjected to seismic excitations”, Technical Report MCEER-08-0005, SUNY Buffalo, Buffalo, NY. Ma, F., Imam, A. and Morzfeld, M. (2009). “The decoupling of damped linear systems in oscillatory free vibration”, Journal of Sound and Vibration, 324(1-2), 408-428. Ma, F., Morzfeld, M., and Imam, A. (2010). “The decoupling of damped linear systems in free or forced vibration”, Journal of Sound and Vibration, 329(15), 3182-3202. Hwang, J. S., Lin, W. C. and Wu, N. J. (2010). “Comparison of distribution methods for viscous damping coefficients to buildings”, Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 9(1), 28-41. Liang, Z., Lee, G. C., Dargush, G. F. and Song, J. (2011). Structural damping: Applications in seismic response modification, CRC Press. “CSI analysis reference manual reference for SAP2000, ETABS, and SAFE”, Computers and Structures, Inc., Berkeley, California. 洪意晴 (2008),平面不對稱建築物樓層勁度與剛心位置之識別,國立成功大學土木工程研究所碩士論文。 呂良正、張仁德與張慈昕 (2010),平面剪力屋架中黏性阻尼器的簡易最佳配置法,結構工程,第二十五卷,第四期,27-40。 呂良正、張仁德 (2011),簡易法應用於三維不對稱多層房屋結構的阻尼器最佳化配置,結構工程,第二十六卷,第四期,17-30。 黃婉婷 (2012),應用反應譜分析法之阻尼器最佳化配置,國立台灣大學土木工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61212 | - |
| dc.description.abstract | 阻尼器最佳化配置研究必須對結構物進行動力分析以求得結構物的反應,但加裝阻尼器的結構系統往往會成為非古典阻尼結構系統,對於非古典阻尼系統一般都以直接積分法(Newmark β、差分法等)求得結構物的反應,但直接積分法於自由度大的結構物需要大量計算時間,影響阻尼器最佳化的計算效率。
本研究整理現行文獻中關於三種非古典阻尼動力系統的模態疊加方程式,前兩種利用質量、勁度和阻尼矩陣組成的特徵值問題,以其正交性質求出解耦方程式後再導出其模態疊加式,第三種使用特徵分解的概念,並將狀態空間運動方程式進行Laplace Transform導出模態疊加式。第一種模態疊加式需將過阻尼模態實數特徵值進行配對,求得對應的模態頻率和模態阻尼比後進行疊加,第二、三種模態疊加式則將過阻尼模態一一疊加。本研究證明三種模態疊加式本質上相同,而且經過案例分析模態疊加式位移反應歷時與直接積分法相同。同時可以根據其模態疊加式發展其反應譜法,來估計結構物的最大反應。 本研究將此模態疊加式和其反應譜法以及直接積分法為動力分析方法應用於阻尼器最佳化配置的簡易法,進行平面剪力屋架的阻尼器最佳化配置分析,分析結果為使用模態疊加法的最佳化配置與直接積分法相同,同時模態疊加法擁有較好的計算效率。 為了將阻尼最佳化應用於真實的結構物,本研究分析三維不對稱結構物阻尼器最佳化配置並應用模態疊加法和直接積分法為動力分析方法。首先合理的簡化結構物的自由度讓其整體動力反應以質心自由度描述,再利用結構分析軟體SAP 2000分析出結構物的質量和勁度矩陣,阻尼器矩陣依幾何關係求得。最後將簡易法概念用至三維不對稱結構物上,最佳化結果使用模態疊加法的最佳化配置與直接積分法相同,同時模態疊加法擁有較好的計算效率。 | zh_TW |
| dc.description.abstract | When optimize placement of dampers for structures, the responses of structures must be obtained. But structures with supplemental dampers are often non-classically damped systems. Generally, these systems can be analyzed by direct integration methods like Newmark beta method or central difference method so that the responses of the structures can be obtained. If the degree-of-freedom of the structures is considerable, the direct integration methods are time consuming. So it affects computational efficiency of optimizing placement of dampers.
This study presents three current researches of mode superposition methods for the non-classically damped systems. The first two methods are developed by the uncoupled equations which base on the eigenvalue problem consists of mass, stiffness and damping matrices. The third method is developed by using the concept of eigen-decomposition and transforming the state-space equation of motion by Laplace Transform. Then the first method must pair the real eigenvalues of overdamped modes with each other and obtain the corresponding modal frequencies and modal damping ratios and finally superimpose these paired overdamped modes. The second and third methods just superimpose all the overdamped modes one by one. This study proves these three mode superposition methods are the same. And these mode superposition methods can develop the corresponding response spectrum methods so that can estimate the maximun response. This study applies the mode superposition method, the corresponding response spectrum methods and the direct integration method to optimize placement of dampers for planar shear frames. The optimal method use the Simple method proposed by Leu et al. (2010). The optimal results by using the mode superposition method are the same as using the direct integration method. Furthermore, the mode superposition method provide less analysis time than the direct integration method. For more real structures, this study applies mode superposition method direct integration method to optimize placement of dampers for two-way asymmetric buildings. At first degree-of-freedom of the structures must be simplified resonable, so use degree-of-freedom of the center of mass to describe the dynamic responses of the whole structures. And then use the software SAP 2000 to obtain mass and stiffness matrices of the structures. Damping matrices can be determined by geometric relationship. Finally, use the Simple method for the two-way asymmetric buildings. The optimal results by using the mode superposition method are the same as using the direct integration method. Furthermore, the mode superposition methods provide less analysis time than the direct integration methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:53:28Z (GMT). No. of bitstreams: 1 ntu-102-R00521222-1.pdf: 8452894 bytes, checksum: ff478dc1da497698a5f5b543435814f0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 IV Abstract V 目錄 VII 表目錄 XI 圖目錄 XVII 第一章 前言 1 1.1 研究目的與動機 1 1.2 文獻回顧 2 1.2.1 結構動力分析方法 2 1.2.2 結構加裝黏性阻尼器之最佳化配置理論 4 1.3 各個章節內容 5 第二章 廣義阻尼系統之模態疊加法 6 2.1 前言 6 2.2 古典阻尼系統之模態疊加法 7 2.3 結構動力系統特徵值問題 9 2.3.1 二次特徵值問題(QEP) 9 2.3.2 廣義特徵值問題(GEP) 10 2.3.3 標準特徵值問題(SEP) 11 2.4 特徵值特性 12 2.4.1 複數特徵值特性 12 2.4.2 實數特徵值特性 13 2.5 模態頻率和模態阻尼比 13 2.5.1 次阻尼模態 13 2.5.2 過阻尼模態 14 2.6 正交性 15 2.6.1 次阻尼模態正交性 15 2.6.2 過阻尼模態正交性(已配對) 16 2.6.3 過阻尼模態正交性(未配對) 16 2.7 廣義阻尼系統解耦方程式 18 2.7.1 過阻尼模態已配對的解耦方程式 18 2.7.2 過阻尼模態未配對解耦方程式 20 2.8 第一種廣義阻尼系統模態疊加法 21 2.8.1 次阻尼模態 21 2.8.2 過阻尼模態 23 2.9 第二種廣義阻尼系統模態疊加法 26 2.10 第三種廣義阻尼系統模態疊加法 28 2.10.1 特徵分解(Eigen-decomposition) 28 2.10.2 伴隨矩陣與正交性 30 2.10.3 解耦方程式 32 2.10.4 模態疊加式 35 2.11 一階常微分方程式之數值積分 36 2.12 證明三種模態疊加式相同 38 2.12.1 證明第一種模態疊加式與第二種模態疊加式相同(次阻尼模態) 38 2.12.2 證明第一種模態疊加式與第二種模態疊加式相同(過阻尼模態) 40 2.12.3 證明第二種模態疊加式與第三種模態疊加式相同(所有模態) 41 2.13 簡化成古典阻尼動力系統 42 2.13.1 次阻尼模態 42 2.13.2 過阻尼模態 43 2.14 案例探討 45 2.14.1 案例探討1 45 2.14.2 案例研究2 46 2.15 小結 49 第三章 廣義阻尼系統之反應譜法 60 3.1 前言 60 3.2 CCQC和CSRSS法 60 3.3 GCQC和GSRSS法 64 3.4 相關係數的探討 69 3.5 過阻尼模態反應譜 70 3.5.1 CCQC和CSRSS過阻尼反應譜 70 3.5.2 GCQC和GSRSS過阻尼反應譜 71 3.6 案例探討 72 3.7 小結 74 第四章 應用於平面剪力屋架之最佳化配置 84 4.1 前言 84 4.2 簡化循序搜尋演算法(SSSA) 84 4.3 簡易法 85 4.4 應用模態疊加法和反應譜法之簡易法 86 4.5 考慮有效模態的模態疊加法和反應譜法應用於簡易法 88 4.5.1 廣義阻尼系統有效模態質量 88 4.5.2 使用有效模態的各種方法應用於簡易法 91 4.6 案例研究 91 4.6.1 案例研究1 91 4.6.2 案例研究2 92 4.6.3 案例研究3 93 4.6.4 案例研究4 94 4.6.5 案例研究5 94 4.7 小結 95 第五章 應用於三維不對稱結構物阻尼器最佳化配置 188 5.1 前言 188 5.2 質心系統自由度之運動方程式 189 5.3 雙向地表加速度下之模態疊加式 190 5.4 利用SAP 2000分析三維不對稱結構物性質 192 5.4.1 SAP 2000分析結果輸出檔 192 5.4.2 ~.TXA檔案 193 5.4.3 ~.TXE檔案 193 5.4.4 ~.TXM檔案 194 5.4.5 ~.TXK檔案 194 5.5 靜態濃縮(static condensation) 194 5.6 質心系統自由度之阻尼矩陣 195 5.6.1 質心座標 196 5.6.2 阻尼係數 197 5.6.3 阻尼矩陣 198 5.7 計算節點自由度 201 5.8 三維不對稱結構物應用簡易法之阻尼器最佳化配置 202 5.9 案例研究 205 5.9.1 案例研究1 205 5.9.2 案例研究2 207 5.9.3 案例研究3 209 5.10 小結 210 第六章 結論與展望 311 6.1 總結論 311 6.2 未來展望 312 參考文獻 314 | |
| dc.language.iso | zh-TW | |
| dc.subject | 簡易法 | zh_TW |
| dc.subject | 三維不對稱結構物 | zh_TW |
| dc.subject | 雙向地表加速度 | zh_TW |
| dc.subject | 模態疊加法 | zh_TW |
| dc.subject | 解耦方程式 | zh_TW |
| dc.subject | 二次特徵值問題 | zh_TW |
| dc.subject | 直接積分法 | zh_TW |
| dc.subject | 阻尼器最佳化配置 | zh_TW |
| dc.subject | 非古典阻尼系統 | zh_TW |
| dc.subject | 簡化循序搜尋演算法 | zh_TW |
| dc.subject | Simple method | en |
| dc.subject | direct integration method | en |
| dc.subject | quadratic eigenvalue problem | en |
| dc.subject | mode superposition method | en |
| dc.subject | optimal placement of dampers | en |
| dc.subject | Simplifie Sequential Search Algorithm | en |
| dc.subject | non-classically damped system | en |
| dc.subject | Asymmetric buildings | en |
| dc.subject | bi-directional seismic ground motion | en |
| dc.title | 應用模態疊加法之阻尼器最佳化配置 | zh_TW |
| dc.title | Optimal Placement of Dampers in Building Structures Using Mode Superposition Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭世榮,宋裕祺 | |
| dc.subject.keyword | 非古典阻尼系統,直接積分法,二次特徵值問題,解耦方程式,模態疊加法,阻尼器最佳化配置,簡化循序搜尋演算法,簡易法,三維不對稱結構物,雙向地表加速度, | zh_TW |
| dc.subject.keyword | non-classically damped system,direct integration method,quadratic eigenvalue problem,mode superposition method,optimal placement of dampers,Simplifie Sequential Search Algorithm,Simple method,Asymmetric buildings,bi-directional seismic ground motion, | en |
| dc.relation.page | 316 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
