Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61182
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳恩賜(Oon-Soo Goh) | |
dc.contributor.author | Chih-Yu Chao | en |
dc.contributor.author | 趙志瑜 | zh_TW |
dc.date.accessioned | 2021-06-16T10:51:31Z | - |
dc.date.available | 2021-02-23 | |
dc.date.copyright | 2021-02-23 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-04 | |
dc.identifier.citation | Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., Morris, J. N., Rebok, G. W., Smith, D. M., Tennstedt, S. L., Unverzagt, F. W., Willis, S. L. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. Jama, 288(18), 2271-2281. Barrett, L. F., Bar, M. (2009). See it with feeling: affective predictions during object perception. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1521), 1325-1334. https://doi.org/10.1098/rstb.2008.0312 Berghuis, K. M. M., Fagioli, S., Maurits, N. M., Zijdewind, I., Marsman, J. B. C., Hortobágyi, T., Koch, G., Bozzali, M. (2019). Age-related changes in brain deactivation but not in activation after motor learning. NeuroImage, 186, 358-368. Cavanna, A. E., Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583. Chen, C.-C., Goh, J. O. S. (2017). Neural correlates of age differences in contingent rule processing. Organization for Human Brain Mapping, Vancouver, Canada. D.C. Delis, J. H. K., E. Kaplan, B.A. Ober. (2000). California Verbal Learning Test – second edition. Adult version. Manual. Psychological Corporation, San Antonio, TX. Dey, D., Sarkar, S. (2000). Modifications of Uncertain Data: A Bayesian Framework for Belief Revision. Information Systems Research, 11, 1-16. Ferdinand, N. K. (2019). The influence of task complexity and information value on feedback processing in younger and older adults: No evidence for a positivity bias during feedback-induced learning in older adults. Brain Research, 1717, 74-85. Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1456), 815-836. Friston, K. (2017). Active inference and artificial curiosity. [Video file]. Retrieved from https://www.youtube.com/watch?v=Y1egnoCWgUg t=2517s ab_channel=PsychologyattheUniversityofEdinburgh. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O'Doherty, J., Pezzulo, G. (2016). Active inference and learning. Neuroscience Biobehavioral Reviews, 68, 862-879. Friston, K., Kilner, J., Harrison, L. (2006). A free energy principle for the brain. J Physiol Paris, 100(1-3), 70-87. Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., Ondobaka, S. (2017). Active Inference, Curiosity and Insight. Neural Comput, 29(10), 2633-2683. Friston, K. J., Rosch, R., Parr, T., Price, C., Bowman, H. (2018). Deep temporal models and active inference. Neuroscience and Biobehavioral Reviews, 90, 486-501. Friston, K. J., Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417-458. Galvin, J. E., Roe, C. M., Powlishta, K. K., Coats, M. A., Muich, S. J., Grant, E., Miller, J. P., Storandt, M., Morris, J. C. (2005). The AD8: a brief informant interview to detect dementia. Neurology, 65(4), 559-564. Goh, J., Hung, H.-Y., Su, Y.-S. (2018). A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise. In. Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., Fox, P. T., Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp, 35(6), 2741-2753. Kaplan, R., Friston, K. J. (2018). Planning and navigation as active inference. Biological Cybernetics, 112(4), 323-343. Kiefer, A., Hohwy, J. (2018). Content and misrepresentation in hierarchical generative models. Synthese, 195(6), 2387-2415. Kilner, J. M., Friston, K. J., Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cogn Process, 8(3), 159-166. Kveraga, K., Ghuman, A. S., Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and cognition, 65(2), 145-168. Liang, P., Jia, X., Taatgen, N. A., Borst, J. P., Li, K. (2016). Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model. Scientific Reports, 6(1), 25976. Lin, W. R., Su, Y. S., Goh, J. O. S. (2020). Neural correlates underlying passive and active abstract rule inferencing. Annual Meeting for the Cognitive Neuroscience Society, Boston, MA, USA. McKoon, G., Ratcliff, R. (2013). Aging and Predicting Inferences: A Diffusion Model Analysis. J Mem Lang, 68(3), 240-254. Moutoussis, M., Fearon, P., El-Deredy, W., Dolan, R. J., Friston, K. J. (2014). Bayesian inferences about the self (and others): a review. Consciousness and cognition, 25(100), 67-76. Olcese, U., Oude Lohuis, M. N., Pennartz, C. M. A. (2018). Sensory Processing Across Conscious and Nonconscious Brain States: From Single Neurons to Distributed Networks for Inferential Representation [Review]. Frontiers in Systems Neuroscience, 12(49). Osterrieth, P. A. (1944). Le test de copie d'une figure complexe; contribution à l'étude de la perception et de la mémoire. [Test of copying a complex figure; contribution to the study of perception and memory.]. Archives de Psychologie, 30, 206-356. Park, D. C., Goh, J. (2009). Successful aging. In Handbook of neuroscience for the behavioral sciences, Vol 2. (pp. 1203-1219). John Wiley Sons Inc. Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychological science, 25(1), 103-112. Reitan, R. M. (1992). Trail Making Test: Manual for Administration and Scoring. Reitan Neuropsychology Laboratory, Tucson, AZ. Sarason, I. G., Levine, H.M., Basham, R.B., et al. (1983). Assessing social support: The Social Support Questionnaire. Journal of Personality and Social Psychology, 44, 127-139. Sawyer, A. G., Lynch, J. G., Brinberg, D. L. (1995). A Bayesian Analysis of the Information Value of Manipulation and Confounding Checks in Theory Tests. Journal of Consumer Research, 21(4), 581-595. http://www.jstor.org/stable/2489717 Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. Schwartz, S. (1992). Universals in the Content and Structure of Values: Theoretical Advances and Empirical Tests in 20 Countries. In (Vol. 25, pp. 1-65). Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., Stine-Morrow, E. A. (2016). Do 'Brain-Training' Programs Work? Psychol Sci Public Interest, 17(3), 103-186. Sormaz, M., Murphy, C., Wang, H.-T., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. S., Jefferies, E., Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9318-9323. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. Stine-Morrow, E. A. L., Parisi, J. M., Morrow, D. G., Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: a field experiment. Psychology and aging, 23(4), 778-786. Team, R. C. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ Wechsler, D. (1981). Wechsler adult intelligence scale-revised (WAIS-R). Psychological Corporation. Wechsler D. (1997). Wechsler Memory Scale - Third Edition (WMS-III). The Psychological Corporation. Wolpert, D. M., Goodbody, S. J., Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci, 1(6), 529-533. Wong, A., Xiong, Y. Y., Kwan, P. W. L., Chan, A. Y. Y., Lam, W. W. M., Wang, K., Chu, W. C. W., Nyenhuis, D. L., Nasreddine, Z., Wong, L. K. S., Mok, V. C. T. (2009). The Validity, Reliability and Clinical Utility of the Hong Kong Montreal Cognitive Assessment (HK-MoCA) in Patients with Cerebral Small Vessel Disease. Dementia and Geriatric Cognitive Disorders, 28(1), 81-87. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res, 17(1), 37-49. Zahedi F., S. J. (2009). Do web sites change customers' beliefs? A study of prior–posterior beliefs in e-commerce. Information Management, 46(2), 125-137. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61182 | - |
dc.description.abstract | 已知老化會造成大腦認知功能的衰退,因此為維持大腦認知功能而產生了各式的認知訓練。一般來說,傳統訓練的方式在於反覆引導參與者使用特定的認知功能,並達到於相對應的認知測驗分數上得到更高分的表現。然而此訓練的效果是否能轉移至其他未受到直接訓練所刺激的認知能力有待驗證。本研究著重研究大腦與外界環境間的交互關係,當大腦接收外界刺激,會更新原有信念並影響下次對外界的推理。推理可以區分為主動與被動,我們推論使用主動推理能力的同時需要整合多種認知能力,因此我們設計一認知訓練,參與者需要使用主動推理來完成任務,不同於過去的認知訓練針對單一認知能力重複刺激,本訓練著重引導參與者持續主動推理完成任務。本訓練使用樂高公司拼裝之機器車與電腦軟體,包含一系列目標導向型任務讓參與者完成,並依完成方式區分為樂高實驗組與控制組。此外,欲驗證訓練效果,在訓練前後使用一顏色規則推理的測驗請參與者於功能性磁振造影過程中完成,該測驗同時包括主動推理與被動推理的單元,參與者必須依靠主動或被動推理找出隱藏在各個組合背後的分類規則。對於樂高實驗組而言,在主動與被動推理的行為結果差異不大。神經活動方面,於主動推理部分之前後測結果顯示由訓練前與視覺推理相關的後葉,至訓練後更多關於推理有關的額葉訊號產生。另外樂高控制組於被動推理部分顯示視覺運動區的活化,且於後測結果顯示差異不大的結果。樂高實驗組前後測之神經心理測驗結果上得到些微的進步,然而此結果尚無法直接驗證此訓練效果是否轉移。綜合來說,本研究旨在設計一短時間且小規模的認知訓練,針對訓練提升主動推理能力,由初步的實驗結果觀察到腦區神經活動之變化加以驗證主動推理確實能改變老年人大腦與環境之交互作用。 | zh_TW |
dc.description.abstract | Traditional cognitive training for older adults focuses on continuous practice of specific abilities like memory, processing speed and reasoning. While such approaches usually result in improvements in the trained cognitive abilities, transfer to other non-trained abilities is limited. In the study, we evaluate the efficacy of a cognitive training approach in older adults based on how the brain interacts with the external environment to form inferences. Inferencing refers to how the brain updates its beliefs and uses them to predict the future. Inferencing can be active or passive, which involves doing actions to verify predictions or just observing events. Critically, inferencing requires the brain to integrate multiple cognitive functions so that training in active inference might transfer. We designed a 6-hr Lego Robot Programming (LRP) cognitive training intervention for participants to engage inferential processing. 24 older adult participants (mean age = 66.6 yrs, SD = 5.48 yrs) were separated into the experimental active inference group (N = 12) and the control passive inference group (N = 12), which dissociated according to whether participants could control the robot directly or not. To evaluate the training effect, we applied a Visual Rule Inference Task (VRIT) in functional magnetic resonance imaging (fMRI) session during pre- and post-training assessments. VRIT behavioral performances were similar for both groups. However, VRIT neural responses shifted from visuoparietal to the middle cingulate area from pre- to post-training in the active inference group but remained in visuo-parietal areas for the passive inference group. Our findings reveal functional brain differences during active and passive inference about the environment. Moreover, we demonstrate somewhat meaningful changes in older adult neural engagement after a short 6-hr cognitive training protocol for active inference. Future analysis will consider whether LRP training transfers to other cognitive abilities. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:51:31Z (GMT). No. of bitstreams: 1 U0001-0302202116513000.pdf: 2892468 bytes, checksum: 4b5024566b2e5448208edc60d398cee2 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 致謝 I 摘要 II Abstract III Content V List of Figures VI List of Tables VII Introduction 1 Method 7 Participants 7 Stimuli and Procedures 7 (a) Visual Rule Inference Task Stimuli Materials 7 (b) Visual Rule Inference Task Procedure 8 (c) Lego Robot Programming Training Materials 9 (d) Lego Robot Programming Training Procedure 11 (e) Brain imaging protocol 13 (f) Neuropsychological Assessments 14 Data Analysis 15 (a) Visual Rule Inference Task behavior 15 (b) VRIT fMRI data preprocessing and whole-brain analysis 15 (c) Regions-of-Interest (ROI) definition and analysis 17 (d) Lego Robot Programming training performance analysis 17 Results 19 Behavioral Results 19 Different Strategies of Lego Robot Programming Behavior for Maze A and B 19 Similar PRE and POST VRIT Performances for EXP and CON Groups 19 Differential VRIT Active vs. Passive Condition Contrasts in EXP and CON Groups 21 Functional and Anatomical ROI Response Differences in EXP and CON Groups from PRE to POST Sessions 22 Discussion 23 References 30 Figures 34 Figure 1. Visual Rule Inference Task 34 Figure 2.1. Lego Programming Training 35 Figure 2.2. The LRP training schedule 36 Figure 3.1. Behavioral Results of Rule Inference Task for EXP group 37 Figure 3.2. Behavioral Results of Rule Inference Task for CON group 38 Figure 4. Midcingulate Cortex Responses for EXP Group and Posterior Cingulate Cortex Responses for CON Group During Choose Phase 39 Figure 5. Anterior Insula Responses for EXP Group in POST-PRE During Answer Phase 40 Figure 6. Higher Neural Responses in Posterior Cingulate Cortex and Cuneus For Control-Experimental and POST-PRE During Choose Phase 41 Figure 7. Results of targeted brain areas using Automated Anatomical Labeling (AAL) during Choose phase for both groups 42 Figure 8. Results of targeted brain areas using Automated Anatomical Labeling (AAL) during Ans phase for both groups 43 Tables 44 Table 1. Rules of Rule Inference Task 44 Table 2.1. Summary of Behavioral Results: Response Time 45 Table 2.2. Summary of Behavioral Results 46 Table 3. Behavioral Results of Lego Programming Training for Maze A and B 47 Table 4. Regions Showing Activation Group During Choose Phase 48 Table 5. Regions Showing Activation Group During Answer Phase 48 Table 6. Results of Neuropsychological Assessments 49 | |
dc.language.iso | en | |
dc.title | 老年主動推理認知訓練與相關神經機制 | zh_TW |
dc.title | Cognitive Training of Active Inference in Older Adults | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳建德(Chien-Te Wu),謝淑蘭(Shu-Lan Hsieh) | |
dc.subject.keyword | 認知訓練,主動推理,被動推理,規則推理,功能性磁振造影, | zh_TW |
dc.subject.keyword | cognitive training,active inference,passive inference,rule learning,fMRI, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU202100463 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
Appears in Collections: | 腦與心智科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0302202116513000.pdf Restricted Access | 2.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.