請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61172完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫志陸,江偉全 | |
| dc.contributor.author | Yun-Chen Chang | en |
| dc.contributor.author | 張芸甄 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:50:53Z | - |
| dc.date.available | 2015-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | Abid, N. and M. Idrissi, 2006. Chapter 2.1.9: Swordfish. In ICCAT Manual. Edited by ICCAT.
Abitia-Cardenas, L.A., F. Galvan-Magaña, F.J. Gutierrez-Sanchez, J. Rodriguez-Romero, B. Aguilar-Palomino and A. Moehl-Hitz, 1999. Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fisheries Research. 44: 95-100. Aurioles-Gamboa, D., S.D. Newsome, S. Salazar-Pico and P.L. Koch, 2009. Stable isotope differences between sea lions (Zalophus) from the gulf of California and Galápagos Islands. Journal of Mammalogy. 90: 1410-1420. Beardsley, J.L., 1978. Report of the swordfish workshop held at the Miami laboratory southeast fisheries center, National Marine Fisheries Service Miami Florida. Col. Vol. Sci. Pap. ICCAT. 7: 149-158. Beardsley Jr., G.L., Merrett, N.R., Richards, W.J., 1975. Synopsis of the biology of the sailfish, Istiophorus platypterus (Shaw and Nodder, 1791). In Shomura, R.S. and Williams, F., Eds. Proceedings of International Billfish Symposium. Part 3. Species Synopses. NOAA Technical Report. NMFS SSRF 675: 95-120. Beckett, J.S., 1974. Biology of swordfish, Xiphias gladius, L., in the Northwest Atlantic Ocean. U.S. Dep. Commer. NOAA Tech. Rep. NMFS SSRF-675: 103-106. Best, P.B. and D.M. Schell, 1996. Stable isotopes in southern right whale (Eubalaena australis) baleen as indicators of seasonal movements, feeding and growth. Marine Biology. 124: 483-494. Bigeleisen, J. and M.G. Mayer, 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics. 15: 261-267. Bigeleisen, J. and M. Wolfsberg, 1958. Theoretical and experimental aspects of isotope effects in chemical kinetics. Advances in Chemical Physics. 1: 15-76. Block, B.A., D. Booth and F.G. Carey, 1992a. Depth and temperature of the blue marlin, Makaira nigricans, observed by acoustic telemetry. Marine Biology. 114: 175-183. Block, B.A., D. Booth and F.G. Carey, 1992b. Direct measurement of swimming speeds and depth of blue marlin. Journal of Experimental Biology. 166: 267-284. Brock, R.E., 1984. A contribution to the trophic biology of the blue marlin (Makaira nigricans Lacepede, 1802) in Hawaii. Pacific Science. 38: 141-149. Buonaccorsi, V., K. Reece, L. Morgan and J. Graves, 1999. Geographic distribution of moleular variance within the blue marlin (Makaira nigricans): a hierarchical analysis of allozyme, single-copy nuclear DNA, and mitochondrial DNA markers. Evolution. 53: 568-579. Carey, F.G. and B.H. Robison, 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry Fishery Bulletin. 79: 277-292. Caut, S., E. Angulo and F. Courchamp, 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology. 46: 443-453. Chen, Y., H. Chen, S. Tuo and K. Ohki, 2008. Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnology and oceanography. 53: 1705-1721. Clark, I. and P. Fritz, 2000. Isotope ratio mass spectrometry. In Clark, I. and Fritz, P., Eds. Environmental Isotopes in Hydrogeology. Lewis Publishers. Boca Raton, Florida. 13-16. Clayton, D., 2003. Handbook of isotopes in the cosmos: hydrogen to gallium (Cambridge Planetary Science). Cambridge University Press. Collette, B.B. and C.E. Nauen, 1983. FAO species catalogue: scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. United Nations Development Programme. New York. Conover, A., 2000. The biggest one that didn't get away (The story behind a 1560-pound, 14-foot-7-inch black marlin caught by Alfred C. Glassell in August 1953). Smithsonian. 31: 22-31. Dewees, C.M., 1992. California's living marine resources and their utilization. Sea Grant Extension Publication. UCSGEP-92: 148-150. Domeier, M.L., 2006. An analysis of Pacific striped marlin (Tetrapturus audax) horizontal movement patterns using pop-up satellite archival tags. Bulletin of Marine Science. 79: 811-825. Eldridge, M.B. and P.G. Wares, 1974. Some biological observations of billfishes taken in the eastern Pacific Ocean, 1967-1970. In Shomura, R.S. and Williams, F., Eds. Species synopsis: proceedings of the international billfish symposium; Kailua-kona. Hawaii. 9-12 August 1972. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-SSRF-675: 89-101. Estrada, J.A., A.N. Rice, M.E. Lutcavage and G.B. Skomal, 2003. Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis Journal of the Marine Biological Association of the United Kingdom. 83: 1347-1350. Fontugne, M. and J. Duplessy, 1981. Organic-carbon isotopic fractionation by marine plankton in the temperature-range -1 to 31-degrees c. Oceanologica Acta (0399-1784) (Gauthier-Villars). 4: 85-90. Frédérich, B., G. Fabri, G. Lepoint, P. Vandewalle and E. Parmentier, 2009. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research. 56: 10-17. Fry, B., 2006. Stable Isotope Ecology. Springer. New York. Galeana-Villasenor, I., F. Galvan-Magana and R. Gomez-Aguilar, 2008. Influence of hook type and fishing depth on longline catches of sharks and other pelagic species in the northwest Mexican Pacific. Revista De Biologia Marina Y Oceanografia. 43: 99-110. Galuardi, B., F. Royer, ois, W. Golet, J. Logan, J. Neilson and M. Lutcavage, 2010. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Canadian Journal of Fisheries and Aquatic Sciences. 67: 966-976. Goodyear, C.P., J. Luo, E.D. Prince and J. E, 2006. Temperature-depth habitat utilization of blue marlin monitored with PSAT tags in the context of simulation modeling of pelagic longline CPUE. Collect. Vol. Sci. Pap. ICCAT. 59: 224-237. Gröning, M., 2004. International stable isotope reference materials. In Groot, P.A.d., Eds. Handbook of stable isotope analytical techniques. Elsevier Science. 1: 1398pp. Graham, B., P. Koch, S. Newsome, K. McMahon and D. Aurioles, 2010. Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In West, J.B., Bowen, G.J., Dawson, T.E. and Tu, K.P., Eds. Isoscapes: understanding movement, pattern and process on earth through isotope mapping. Springer. New York, NY, USA. 299-318. Graves, J.E. and J.R. McDowell, 2003. Stock structure of the world's istiophorid billfishes: a genetic perspective. Marine and Freshwater Research. 54: 287-298. Gunn, J.S., T.A. Patterson and J.G. Pepperell, 2003. Short-term movement and behaviour of black marlin Makaira indica in the Coral Sea as determined through a pop-up satellite archival tagging experiment. Marine and Freshwater Research. 54: 515-525. Harvey, C.J., P.C. Hanson, T.E. Essington, P.B. Brown and J.F. Kitchell, 2002. Using bioenergetics models to predict stable isotope ratios in fishes. Canadian Journal of Fisheries and Aquatic Sciences. 59: 115-124. Hebert, C.E., J.L. Shutt, K.A. Hobson and D.V.C. Weseloh, 1999. Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): evidence from stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences. 56: 323-338. Hinton, M.G., 2001. Status of blue marlin in the Pacific Ocean. Status of the tuna and billfish stocks in 1999. IATTC Stock Assess. Rep.: 284-318. Hinton, M.G., 2010. Assessment of striped marlin in the eastern Pacific Ocean in 2008 and outlook for the future. Inter-American Tropical Tuna Commission, La Jolla, CA, US., Stock Assessment Report. 10: 229-251. Hobson, K.A., 1999. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia. 120: 314-326. Hobson, K.A., R. Barnett-Johnson and T. Cerling, 2010. Using isoscapes to track animal migration. In G.J., B., J., W., K., T. and T., D., Eds. Isoscapes: isotope mapping and its applications. Springer. New York. 273-298. Holland, K., R. Brill and R.K.C. Chang, 1990. Horizontal and vertical movements of pacific blue marlin captured and released using sportfishing gear. Fishery Bulletin U.S. 88: 397-402. Holland, K.N., 2003. A perspective on billfish biological research and recommendations for the future. Marine and Freshwater Research. 54: 343-347. Hoolihan, J., 2003. Sailfish movement in the Arabian Gulf: a summary of tagging efforts. Marine Freshwater Research. 54: 509-513. Hyslop, E.J., 1980. Stomach contents analysis-a review of methods and their application. Journal of Fish Biology. 17: 411-429. Johnson, S. and D. Schindler, 2009. Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecological Research. 24: 855-863. Jolley Jr., J.W. and E.W. Irby, 1979. Survival of tagged and released Atlantic sailfish (Istiophorus platypterus: Istiophoridae) determined with acoustical telemetry. Bull. Mar. Sci. 29: 155-169. Kelton, W.M., B.J. Johnson and W.G. Ambrose, Jr., 2005. Diet and movement of the killifish, Fundulus heteroclitus, in a maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries. 28: 966-973. Kleiber, P., M.G. Hinton and Y. Uozumi, 2003. Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MULTIFAN-CL. Marine and Freshwater Research. 54: 349-360. Lin, H.J., W.Y. Kao and Y.T. Wang, 2007. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuarine, Coastal and Shelf Science. 73: 527-537. Logan, J.M., T.D. Jardine, T.J. Miller, S. Bunn, R.A. Cunjak and M.E. Lutcavage, 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. Animal Ecology. 77: 838-846. Logan, J.M. and M.E. Lutcavage, 2012. Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central North Atlantic Ocean using stable isotope analysis. Deep Sea Research Part II: Topical Studies in Oceanography. this issue. Ménard, F., A. Lorrain, M. Potier and F. Marsac, 2007. Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Marine Biology. 153: 141-152. Macdonald, J.S., K.G. Waiwood and R.H. Green, 1982. Rates of digestion of different prey in Atlantic Cod (Gadus morhua), Ocean Pout (Macrozoarces americanus), Winter Flounder (Pseudopleuronectes americanus), and American Plaice (Hippoglossoides platessoides). Canadian Journal of Fisheries and Aquatic Sciences. 39: 651-659. MacKenzie, K.M., M.R. Palmer, A. Moore, A.T. Ibbotson, W.R.C. Beaumont, D.J.S. Poulter and C.N. Trueman, 2011. Locations of marine animals revealed by carbon isotopes. Nature Scientific Reports. 21: 1-6. Madigan, D.J., A.B. Carlisle, H. Dewar, O.E. Snodgrass, S.Y. Litvin, F. Micheli and B.A. Block, 2012. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Scientific Reports. 2: 654. Mather, F.J., D.C. Tabb, J.M. Mason Jr. and H.L. Clark, 1974. Results of sailfish tagging in the Western North Atlantic Ocean. In Shomura, R.S. and Williams, F., Eds. Proceedings of International Billfish Symposium. Part 2. Review and Contributed papers. NOAA Technical Report. NMFS SSRF 675: 194-203. McClure, M.M., P.B. McIntyre and A.R. McCune, 2006. Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. Journal of Fish Biology. 69: 553-570. McDowell, J.R. and J.E. Graves, 2008. Population structure of striped marlin (Kajikia audax) in the Pacific Ocean based on analysis of microsatellite and mitochondrial DNA. Canadian Journal of Fisheries and Aquatic Sciences. 65: 1307-1320. Molony, B., 2005. Summary of the biology, ecology and stock status of billfishes in the WCPFC, with a review of major variables influencing longline fishery performance [EB WP-2]. Meeting of the Scientific Committee of the Western and Central Pacific Fisheries Commission (WCPFC-SC1). 67pp. Nakamura, I., 1974. Some aspects of the systematics and distribution of billfishes. In Shomura, R.S. and Williams, F., Eds. Proceedings of International Billfish Symposium. Part 2. Review and contributed papers. NOAA Technical Report NMFS SSRF. 675: 45-53. Nakamura, I., 1985. FAO species catalogue. Vol. 5. Billfishes of the world: An annotated and illustrated catalogue of marlins, sailfishes, spearfishes, and swordfishes known to date. FAO Fisheries Synopsis. New York: United Nations Food and Agriculture Organization 125: 65pp. Nishikawa, Y. and S. Ueyanagi, 1974. The distribution of the larvae of swordfish, Xiphias gladius, in the Indian and Pacific Ocean. U.S. Dep. Commer. NOAA Tech. Rep. NMFS; SSRF-675: 261-264. Olson, R.J., B.N. Popp, B.S. Graham, G.A. López-Ibarra, F. Galván-Magaña, C.E. Lennert-Cody, N. Bocanegra-Castillo, N.J. Wallsgrove, E. Gier, V. Alatorre-Ramírez, L.T. Ballance and B. Fry, 2010. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Progress in Oceanography. 86: 124-138. Ortiz, M., E.D. Prince, J.E. Serafy, D.B. Holts, K.B. Davy, J.G. Pepperell, M.B. Lowry and J.C. Holdsworth, 2003. Global overview of the major constituent-based billfish tagging programs and their results since 1954. Marine and Freshwater Research. 54: 489-507. Palko, B.J., G.L. Beardsley and W.J. Richards, 1981. Synopsis of the biology of the swordfish, Xiphias gladius Linnaeus. NOAA Tech. Rep. NMFS Circular 441: 21pp. Penzias, A.A., 1979. The Origin of the Elements. Science. 205: 549-554. Penzias, A.A., 1980. Nuclear Processing and Isotopes in the Galaxy. Science. 208: 663-669. Pepperell, J.G. and T.L.O. Davis, 1999. Post-release behaviour of black marlin, Makaira indica, caught off the Great Barrier Reef with sportfishing gear. Marine Biology. 135: 369-380. Peterson, B.J. and B. Fry, 1987. Stable isotopes in ecosystem studies. Follow Annual Review of Ecology, Evolution, and Systematics. 18: 293-320. Peterson, B.J., R.W. Howarth and R.H. Garritt, 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science. 227: 1361-1363. Popp, B.N., B.S. Graham, R.J. Olson, C.C.S. Hannides, M.J. Lott and B. Fry, 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound‐specific nitrogen isotope analysis of proteinaceous amino acids. In Dawson, T.E. and Seigwolf, R.T.W., Eds. Isotopes as Tracers in Ecological Change. Elsevier. New York. 1. Post, D., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 83: 703-718. Post, D., C. Layman, D. Arrington, G. Takimoto, J. Quattrochi, Monta and C. a, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia. 152: 179-189. Revill, A., J. Young and M. Lansdell, 2009. Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Marine Biology. 156: 1241-1253. Rosas-Alayola, J., A. Herández-Herrera, F. Galvan-Magaña, L.A. Abitia-Cárdenas and A.F. Muhlia-Melo, 2002. Diet composition of sailfish (Istiophorus platypterus) from the southern Gulf of California, Mexico. Fish. Res. 57: 185-195. Scott, E.L., E.D. Prince and C.D. Goodyear, 1990. History of the Cooperative Game Fish Tagging Program in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea, 1954–1987. American Fisheries Society Symposium. 7: 841-853. Shaklee, J., R. Brill and R. Acerra, 1983. Biochemical genetics of pacific blue marlin Makaira nigricans, from Hawaiian waters. Fishery Bulletin. 81: 85-90. Shao, K.T., 2009. Taiwan Fish Database. WWW Web electronic publication. version 2009/1. http://fishdb.sinica.edu.tw, (2013-6-28) Shimose, T., H. Shono, K. Yokawa, H. Saito and K. Tachihara, 2006. Food and feeding habits of blue marlin, Makaira nigricans, around Yonaguni Island, southwestern Japan. Bulletin of Marine Science. 79: 761-775. Skillman, R.A. and M.Y.Y. Yong, 1976. Von bertalanffy growth curves for striped marlin Tetrapturus audax and blue marlin makaira nigricans in the central north pacific ocean. Fishery Bulletin 74: 553-566. Steer, M., G. Halverson, A. Fowler and B. Gillanders, 2010. Stock discrimination of Southern Garfish (Hyporhamphus melanochir) by stable isotope ratio analysis of otolith aragonite. Environmental Biology of Fishes. 89: 369-381. Stowasser, G., A. Atkinson, R.A.R. McGill, R.A. Phillips, M.A. Collins and D.W. Pond, 2012. Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep Sea Research Part II: Topical Studies in Oceanography. 59–60: 208-221. Su, N.J., C.L. Sun, A.E. Punt, S.Z. Yeh and G. DiNardo, 2012. Incorporating habitat preference into the stock assessment and management of blue marlin (Makaira nigricans) in the Pacific Ocean. Marine and Freshwater Research. 63: 565-575. Suzuki, K.W., A. Kasai, K. Nakayama and M. Tanaka, 2005. Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Canadian Journal of Fisheries and Aquatic Sciences. 62: 671-678. Sweeting, C.J., J. Barry, C. Barnes, N.V.C. Polunin and S. Jennings, 2007. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology. 340: 1-10. Takahashi, M., H. Okamura, K. Yokawa and M. Okazaki, 2003. Swimming behaviour and migration of a swordfish recorded by an archival tag. Marine and Freshwater Research. 54: 527-534. Teece, M.A. and M.L. Fogel, 2004. Preparation of ecological and biochemical samples for isotope analysis. In Groot, P.A.d., Eds. Handbook of stable isotope analytical techniques. Elsevier Science. 1: 177-202. Torres Rojas, Y., A. Hernandez Herrera, S. Ortega-Garcia and M. Domeier, 2013. Stable isotope differences between blue marlin (Makaira nigricans) and striped marlin (Kajikia audax) in the southern gulf of California, Mexico. Bulletin of Marine Science. 89: 421-436. Ueyanagi, S. and P.G. Wares, 1975. Synopsis of biological data on striped marlin, Tetrapturus audux (Philippi), 1887. In Shomura, R.S. and Williams, F., Eds. In Proceedings of the International Billfish, Kailua-Kona, Hawaii, Symposium, 9-12 August 1972. Part 3, Species synopses. Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society. 562-581. Voss, G.L., 1953. A contribution to the life history and biology of the sailfish, Istiophorus americanus Cuv. and Val., in Florida water. Bull. Mar. Sci. Gulf. Caribb. 3: 206-240. Wada, E., T. Ando and K. Kumazawa, 1995. Biodiversity of stable isotope ratios. In Yoneyama, T., Minagawa, M. and Fry, B.D., Eds. Stable isotopes in the biosphere. Kyoto University. 7-14. Wells, R.J.D. and J.R. Rooker, 2009. Feeding ecology of pelagic fish larvae and juveniles in slope waters of the Gulf of Mexico. Journal of Fish Biology. 75: 1719-1732. Whitelaw, W., 2003. Recreational billfish catches and gamefishing facilities of Pacific Island nations in the Western and Central Pacific Ocean. Marine and Freshwater Research. 54: 463-471. Wilson, C.A., J.M. Dean, E.D. Prince and D.W. Lee, 1991. An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. Journal of Experimental Marine Biology and Ecology. 151: 209-225. Young, J.W., M.J. Lansdell, R.A. Campbell, S.P. Cooper, F. Juanes and M.A. Gue, 2010. Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Marine Biology. 157: 2347-2368. Zhang, W. and W.-X. Wang, 2012. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters. Journal of Hazardous Materials. 215–216: 65-74. 王勝平、孫志陸, 1998. 台灣近海劍旗魚漁業之漁場及漁獲概況分析. 中國水產. 550: 27-38. 台灣水產協會, 2010. 氣候變遷對我國週邊海域營養鹽及基礎生產力變動的影響. 水產月刊. 第5卷. 第1期. 第661號. 沈世傑、李信徹、卲廣昭、莫顯蕎、陳春暉、陳哲聰, 1993. 台灣魚類誌. 國立台灣大學動物學系. 960頁. 凌永健、袁玉潔、蔡沛宜、邵震茹, 2009. 化合物別同位素比質譜術的研發進展-酒品摻假鑑定. 科儀新知. 120-126. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61172 | - |
| dc.description.abstract | 本研究利用穩定同位素分析探討臺灣東部海域旗魚類的食物階層動態,自2012年1月至2013年1月止於臺東縣新港魚市場採得黑皮旗魚(n = 216)、劍旗魚(n = 72)、白皮旗魚(n = 43)與紅肉旗魚(n = 14)肌肉樣本,並採獲2012年8月於帛琉海域作業所漁獲之黑皮旗魚(n =37)肌肉樣本。研究結果顯示,臺灣東部海域白皮旗魚與劍旗魚δ15N值最高,黑皮旗魚次之,紅肉旗魚δ15N值最低;白皮旗魚與黑皮旗魚δ13C值最高,劍旗魚與紅肉旗魚次之。δ15N值同時受到體型大小與攝食能力的影響,δ13C值的差異則顯示出不同旗魚覓食的餌料生物組成以及對碳元素不同的利用程度。本研究並收集環境餌料生物進行穩定同位素分析,結果顯示旗魚類與餌料生物δ15N值有0.71 ~ 3.03‰的差距,在一些旗魚魚體中δ15N值與餌料生物可以達到一個營養位階的差距,顯示採集之餌料生物為臺灣東部海域旗魚重要的餌料生物組成之一。黑皮旗魚δ15N值在不同季節間有顯著差異,秋季δ15N值最高,夏季次之,春季與冬季最低;δ13C值在不同季節間則沒有顯著差異,由於δ13C值受到基礎生產力的影響,臺灣東部海域基礎生產力於秋季最高,春季次之,但是黑皮旗魚δ13C值在不同季節間未具顯著差異,推測在黑皮旗魚移動的海域中含有不同海域的穩定同位素資料,長距離的移動將不同海域的情況混合記錄在肌肉組織內。本研究臺灣東部海域黑皮旗魚δ15N值有隨體長增加而上升的趨勢,但是關係並不顯著,帛琉海域黑皮旗魚δ15N值與體長則未有顯著關係,這種情況經常出現在大陸沿岸以及大洋洄游性魚類覓食的海域中,因為掠食者之間餌料生物的組成相差不大,因此顯現穩定同位素相似。在空間分布上帛琉海域黑皮旗魚δ15N值較臺灣東部海域黑皮旗魚要來得高,但δ13C值則未有顯著差異,顯示黑皮旗魚於不同海域可能覓食不同食物階層之餌料生物。 | zh_TW |
| dc.description.abstract | Nitrogen and carbon stable isotopes were used to study the trophic dynamics of the billfishes and prey species in the waters off eastern Taiwan, and of the blue marlin in the Palau waters. White muscle samples were taken and frozen instantly at the Shinkang fish market of eastern Taiwan for the blue marlin, swordfish, black marlin and striped marlin captured in eastern Taiwan waters and the blue marlin captured in Paulau waters. Significant difference in δ15N was found among billfishes in the eastern Taiwan waters.The black marlin and swordfish have the highest δ15N, followed by the blue marlin, and the striped marlin has the lowest δ15N. The black marlin and blue marlin have the highestδ13C, followed by the swordfish and striped marlin.δ15N are influenced by body sizes and the foraging ability, while δ13C differences indicate the feeding ecology of different billfishes and their diverse uses of carbon. The δ15N difference between prey species and billfishes up to one trophic level indicates that the prey species collected in the study might be the important source of prey for billfishes in the eastern Taiwan waters. There was a significant difference in δ15N among seasons, the highest in the fall, followed by the summer, and the lowest in the spring and winter. However, no relationship was found between δ13C and seasons. The δ13C values were influenced by the primary productivity of the ocean. The highest primary productivity of the eastern Taiwan waters occurred in the fall, followed by the spring. The results indicated there are differences in the primary productivityamong seasons. However, no relationship was found in the δ13C among seasons. When the blue marlin moved between different oceans, they combined different stable isotope conditions. The long-distance movement of the blue marlin recorded a mixture of stable isotopes in the muscle tissues among different oceans. The δ15N of billfishes slightly increased with increasing size in the eastern Taiwan waters. However, no relationship was found betweenδ15N and body sizes in the Palau waters.This situation often occurs in the coastal and oceanic waters where migratory fishes feed. Because the prey composition of the ocean are similar, the stable isotope among predators have little difference. The δ15N of blue marlin in thePalau waters was higher than that in the eastern Taiwan waters. However, no difference was found in δ13C between thePalau waters and the eastern Taiwan waters. The stable isotope values in different oceans indicate different productivity, and in the study, the stable isotope values of top predators reveal the different primary productivity in different oceans. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:50:53Z (GMT). No. of bitstreams: 1 ntu-102-R00241205-1.pdf: 2238287 bytes, checksum: cd7b11172d55d127c7f06cc4d6da37a7 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝辭 II
摘要 III Abstract IV 圖目錄 VII 表目錄 IX 第一章前言 1 一、 種類與生態習性 1 1. 黑皮旗魚 1 2. 劍旗魚 2 3. 白皮旗魚 3 4. 紅肉旗魚 4 5. 雨傘旗魚 4 6. 小吻四鰭旗魚 5 二、 漁業概況 6 三、 穩定同位素分析 8 四、 研究動機與目的 9 第二章材料方法 11 一、 樣本採集 11 二、 樣本處理 11 1. 採樣部位之選擇 11 2. 肌肉樣本之製作程序 12 3. 胃內含物樣本之製作程序 12 4. 錫杯包裝之處理方法 12 三、 樣本分析 13 1. 儀器設備 13 2. 穩定同位素分析 13 四、 資料分析 14 1. 體長與季節關係 14 2. 穩定同位素與季節關係 14 3. 體長與穩定同位素關係 14 4. 營養位階分析 15 第三章結果 16 一、樣本大小組成 16 二、穩定同位素氮與碳之關係 16 三、體長等級與穩定氮碳同位素之關係 18 四、季節別穩定同位素氮碳之差異 19 第四章討論 20 一、旗魚類穩定同位素分析 20 二、食物階層動態分析 21 三、體長別影響 23 四、季節別影響 24 五、海域別差異 25 第五章結論 27 參考文獻 29 | |
| dc.language.iso | zh-TW | |
| dc.subject | 穩定氮同位素 | zh_TW |
| dc.subject | 穩定碳同位素 | zh_TW |
| dc.subject | 食物網結構 | zh_TW |
| dc.subject | 胃內含物組成 | zh_TW |
| dc.subject | stomach content | en |
| dc.subject | stable isotopes analysis | en |
| dc.subject | δ15N | en |
| dc.subject | δ13C | en |
| dc.subject | food web | en |
| dc.title | 利用穩定同位素分析探討臺灣東部海域旗魚之食物階層動態 | zh_TW |
| dc.title | Trophic dynamic of billfishes in eastern Taiwan waters inferred from stable isotope analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邵廣昭,劉光明,王珮玲 | |
| dc.subject.keyword | 胃內含物組成,穩定氮同位素,穩定碳同位素,食物網結構, | zh_TW |
| dc.subject.keyword | stomach content,stable isotopes analysis,δ15N,δ13C,food web, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
