Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorChih-Hsiang Yangen
dc.contributor.author楊志祥zh_TW
dc.date.accessioned2021-06-16T10:49:34Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citationAndrejeva, J., Childs, K., Young, D., Carlos, T., Stock, N., Goodbourn, S., and Randall, R.
(2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase,
mda-5, and inhibit its activation of the IFN-beta promoter. Proceedings of the
National Academy of Sciences of the United States of America 101, 17264-17273.
Bauernfeind, F., Horvath, G., Stutz, A., Alnemri, E., MacDonald, K., Speert, D.,
Fernandes-Alnemri, T., Wu, J., Monks, B., Fitzgerald, K., et al. (2009). Cutting edge:
NF-kappaB activating pattern recognition and cytokine receptors license NLRP3
inflammasome activation by regulating NLRP3 expression. Journal of immunology
(Baltimore, Md : 1950) 183, 787-878.
Boyden, E., and Dietrich, W. (2006). Nalp1b controls mouse macrophage susceptibility
o anthrax lethal toxin. Nature genetics 38, 240-244.
Chen, G., Liu, M., Wang, F., Bertin, J., and Núñez, G. (2011). A functional role for Nlrp6
in intestinal inflammation and tumorigenesis. Journal of immunology (Baltimore,
Md : 1950) 186, 7187-7281.
Cinel, I., and Opal, S.M. (2009). Molecular biology of inflammation and sepsis: a primer.
Critical care medicine 37, 291-304.
Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Forster, I. (1999). Conditional
gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic
research 8, 265-277.
Coeshott, C., Ohnemus, C., Pilyavskaya, A., Ross, S., Wieczorek, M., Kroona, H., Leimer,
A.H., and Cheronis, J. (1999). Converting enzyme-independent release of tumor
necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in
the presence of activated neutrophils or purified proteinase 3. Proceedings of the
National Academy of Sciences of the United States of America 96, 6261-6266.
Costelloe, E., Stacey, K., Antalis, T., and Hume, D. (1999). Regulation of the plasminogen
activator inhibitor-2 (PAI-2) gene in murine macrophages. Demonstration of a novel
pattern of responsiveness to bacterial endotoxin. Journal of leukocyte biology 66,
172-254.
Croucher, D.R., Saunders, D.N., Lobov, S., and Ranson, M. (2008). Revisiting the
biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 8, 535-545.
Dunne, A. (2011). Inflammasome activation: from inflammatory disease to infection.
Biochemical Society transactions 39, 669-742.
Elinav, E., Strowig, T., Kau, A., Henao-Mejia, J., Thaiss, C., Booth, C., Peaper, D., Bertin, J.,
Eisenbarth, S., Gordon, J., et al. (2011). NLRP6 inflammasome regulates colonic
microbial ecology and risk for colitis. Cell 145, 745-802. 73
Fantuzzi, G.D., C. (1999). <Interleukin-18 and Interleukin-1β Two Cytokine Substrates
for ICE (Caspase-1)>. Journal of clinical immunology
Faustin, B., Lartigue, L., Bruey, J.-M., Luciano, F., Sergienko, E., Bailly-Maitre, B.,
Volkmann, N., Hanein, D., Rouiller, I., and Reed, J. (2007). Reconstituted NALP1
inflammasome reveals two-step mechanism of caspase-1 activation. Molecular cell
25, 713-737.
Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J., and Alnemri, E. (2009). AIM2 activates
the inflammasome and cell death in response to cytoplasmic DNA. Nature 458,
509-522.
Fernandes-Alnemri, T., Yu, J.-W., Juliana, C., Solorzano, L., Kang, S., Wu, J., Datta, P.,
McCormick, M., Huang, L., McDermott, E., et al. (2010). The AIM2 inflammasome is
critical for innate immunity to Francisella tularensis. Nature immunology 11,
385-478.
Grenier, J., Wang, L., Manji, G., Huang, W., Al-Garawi, A., Kelly, R., Carlson, A., Merriam,
S., Lora, J., Briskin, M., et al. (2002). Functional screening of five PYPAF family
members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS
letters 530, 73-81.
Greten, F.R., Arkan, M.C., Bollrath, J., Hsu, L.C., Goode, J., Miething, C., Goktuna, S.I.,
Neuenhahn, M., Fierer, J., Paxian, S., et al. (2007). NF-kappaB is a negative regulator
of IL-1beta secretion as revealed by genetic and pharmacological inhibition of
IKKbeta. Cell 130, 918-931.
Greten, F.R., and Karin, M. (2004). The IKK/NF-kappaB activation pathway-a target for
prevention and treatment of cancer. Cancer letters 206, 193-199.
Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.,
Latz, E., and Fitzgerald, K. (2009). AIM2 recognizes cytosolic dsDNA and forms a
caspase-1-activating inflammasome with ASC. Nature 458, 514-522.
Iost, I., and Dreyfus, M. (2006). DEAD-box RNA helicases in Escherichia coli. Nucleic
acids research 34, 4189-4286.
Ishaq, M., Ma, L., Wu, X., Mu, Y., Pan, J.a., Hu, J., Hu, T., Fu, Q., and Guo, D. (2009). The
DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor
kappaB-mediated transcription. Journal of cellular biochemistry 106, 296-601.
Jarmoskaite, I., and Russell, R. (2011). DEAD-box proteins as RNA helicases and
chaperones. Wiley interdisciplinary reviews RNA 2, 135-187.
Kahlenberg, J., Lundberg, K., Kertesy, S., Qu, Y., and Dubyak, G. (2005). Potentiation of
caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires
NF-kappaB-driven protein synthesis. Journal of immunology (Baltimore, Md : 1950)
175, 7611-7633.
Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K., Takeuchi, O., 74
and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I
interferon induction. Nature immunology 6, 981-989.
Lamkanfi, M. (2011). Emerging inflammasome effector mechanisms. Nature reviews
Immunology 11, 213-220.
Lamkanfi, M., Sarkar, A., Vande Walle, L., Vitari, A.C., Amer, A.O., Wewers, M.D., Tracey,
K.J., Kanneganti, T.D., and Dixit, V.M. (2010). Inflammasome-dependent release of
the alarmin HMGB1 in endotoxemia. J Immunol 185, 4385-4392.
Lee, J., Cochran, B., Lobov, S., and Ranson, M. (2011). Forty years later and the role of
plasminogen activator inhibitor type 2/SERPINB2 is still an enigma. Seminars in
thrombosis and hemostasis 37, 395-802.
Linder, P. (2006). Dead-box proteins: a family affair--active and passive players in
RNP-remodeling. Nucleic acids research 34, 4168-4180.
Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA
helicase family. Nature reviews Molecular cell biology 12, 505-521.
Mankan, A.K., Kubarenko, A., and Hornung, V. (2012). Immunology in clinic review
series; focus on autoinflammatory diseases: inflammasomes: mechanisms of
activation. Clinical and experimental immunology 167, 369-381.
Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P.,
Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the
inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218.
Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular
platform triggering activation of inflammatory caspases and processing of proIL-beta.
Molecular cell 10, 417-443.
Matsuda, A., Jacob, A., Wu, R., Aziz, M., Yang, W.L., Matsutani, T., Suzuki, H., Furukawa,
K., Uchida, E., and Wang, P. (2012). Novel therapeutic targets for sepsis: regulation of
exaggerated inflammatory responses. Journal of Nippon Medical School = Nippon Ika
Daigaku zasshi 79, 4-18.
Medcalf, R.L., and Stasinopoulos, S.J. (2005). The undecided serpin. The ins and outs of
plasminogen activator inhibitor type 2. The FEBS journal 272, 4858-4867.
Misawa, T., Takahama, M., Kozaki, T., Lee, H., Zou, J., Saitoh, T., and Akira, S. (2013).
Microtubule-driven spatial arrangement of mitochondria promotes activation of the
NLRP3 inflammasome. Nature immunology 14, 454-460.
Park, J., Greten, F., Wong, A., Westrick, R., Arthur, J., Otsu, K., Hoffmann, A., Montminy,
M., and Karin, M. (2005). Signaling pathways and genes that inhibit
pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators.
Immunity 23, 319-348.
Perkins, N. (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function.
Nature reviews Molecular cell biology 8, 49-111. 75
Pham, C.T. (2006). Neutrophil serine proteases: specific regulators of inflammation.
Nature reviews Immunology 6, 541-550.
Pierini, R., Juruj, C., Perret, M., Jones, C., Mangeot, P., Weiss, D., and Henry, T. (2012).
AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected
caspase-1-deficient macrophages. Cell death and differentiation.
Pyle, A. (2011). RNA helicases and remodeling proteins. Current opinion in chemical
biology 15, 636-678.
Rathinam, V., Vanaja, S., and Fitzgerald, K. (2012a). Regulation of inflammasome
signaling. Nature immunology 13, 333-335.
Rathinam, V.A., Vanaja, S.K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L.M.,
Leong, J.M., and Fitzgerald, K.A. (2012b). TRIF licenses caspase-11-dependent NLRP3
inflammasome activation by gram-negative bacteria. Cell 150, 606-619.
Ruocco, M.G., Maeda, S., Park, J.M., Lawrence, T., Hsu, L.C., Cao, Y., Schett, G., Wagner,
E.F., and Karin, M. (2005). I{kappa}B kinase (IKK){beta}, but not IKK{alpha}, is a critical
mediator of osteoclast survival and is required for inflammation-induced bone loss.
The Journal of experimental medicine 201, 1677-1687.
Sarkar, A., Hall, M.W., Exline, M., Hart, J., Knatz, N., Gatson, N.T., and Wewers, M.D.
(2006). Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis
independently of interleukin-1beta and interleukin-18. American journal of
respiratory and critical care medicine 174, 1003-1010.
Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-853.
Schroder, K., Zhou, R., and Tschopp, J. (2010). The NLRP3 inflammasome: a sensor for
metabolic danger? Science (New York, NY) 327, 296-596.
Shajani, Z., Sykes, M., and Williamson, J. (2011). Assembly of bacterial ribosomes.
Annual review of biochemistry 80, 501-527.
Solem, A., Zingler, N., and Pyle, A. (2006). A DEAD protein that activates intron
self-splicing without unwinding RNA. Molecular cell 24, 611-618.
Strowig, T., Henao-Mejia, J., Elinav, E., and Flavell, R. (2012). Inflammasomes in health
and disease. Nature 481, 278-364.
Tanner, N., Cordin, O., Banroques, J., Do&egrave;re, M., and Linder, P. (2003). The Q motif: a
newly identified motif in DEAD box helicases may regulate ATP binding and
hydrolysis. Molecular cell 11, 127-165.
Tran, E., Zhou, Y., Corbett, A., and Wente, S. (2007). The DEAD-box protein Dbp5
controls mRNA export by triggering specific RNA:protein remodeling events.
Molecular cell 28, 850-859.
Unterholzner, L., Keating, S., Baran, M., Horan, K., Jensen, S., Sharma, S., Sirois, C., Jin,
T., Latz, E., Xiao, T., et al. (2010). IFI16 is an innate immune sensor for intracellular
DNA. Nature immunology 11, 997-2001. Wang, S., Miura, M., Jung, Y., Zhu, H., Li, E., and Yuan, J. (1998). Murine caspase-11, an
ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501-510.
Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama, K., Ogawa, S., Arao, Y., Suzawa,
M., Kobayashi, Y., Yano, T., Yoshikawa, H., et al. (2001). A subfamily of RNA-binding
DEAD-box proteins acts as an estrogen receptor alpha coactivator through the
N-terminal activation domain (AF-1) with an RNA coactivator, SRA. The EMBO
journal 20, 1341-1393.
Weirich, C.S., Erzberger, J.P., Flick, J.S., Berger, J.M., Thorner, J., and Weis, K. (2006).
Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its
coactivator InsP6 is required for mRNA export. Nature cell biology 8, 668-676.
Yang, Q., Del Campo, M., Lambowitz, A., and Jankowsky, E. (2007). DEAD-box proteins
unwind duplexes by local strand separation. Molecular cell 28, 253-316.
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M.,
Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential
function in double-stranded RNA-induced innate antiviral responses. Nature
immunology 5, 730-737.
Yu, H., Maurer, F., and Medcalf, R.L. (2002). Plasminogen activator inhibitor type 2: a
regulator of monocyte proliferation and differentiation. Blood 99, 2810-2818.
Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.-J. (2011). The helicase DDX41
senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature
immunology 12, 959-1024.
Zhao, Y., Yang, J., Shi, J., Gong, Y.-N., Lu, Q., Xu, H., Liu, L., and Shao, F. (2011). The
NLRC4 inflammasome receptors for bacterial flagellin and type III secretion
apparatus. Nature 477, 596-1196.
Zhou, R., Yazdi, A.S., Menu, P., and Tschopp, J. (2011). A role for mitochondria in NLRP3
inflammasome activation. Nature 469, 221-225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61151-
dc.description.abstract先天性免疫系統是人體中面對外來病菌入侵或是自身危險因子攻擊的第一道防線。近幾年,發炎體(the inflammasomes)這種新興蛋白質複合體在先天免疫學界中迅速竄起,被證實其是多細胞生物體內用以對抗病原體重要的一環。發炎體主要功能為,將第一型半胱天冬酶(caspase-1)活化並因此催化第一型介白素β (IL-1β)與第十八型介白素(IL-18)熟成的能力,以協助宿主對抗病原體。但發炎體究竟是如何被調控的至今尚未明瞭。
過去研究中,指出第二型纖溶酶原激活物抑制酶(PAI-2)在受LPS刺激的IKKβ缺陷巨噬細胞中能夠抑制過多的第一型介白素β的熟成,但其抑制機制目前並不清楚。而本研究便進一步利用轉殖小鼠來研究第二型纖溶酶原激活物抑制酶的生理功能。我們在IKKβ缺陷小鼠骨髓分化巨噬細胞(bone marrow derived macrophages)與中性球(neutrophils)中證實第二型纖溶酶原激活物抑制酶,皆能抑制LPS引發第一型介白素β的分泌。另外,第二型纖溶酶原激活物抑制酶也能降低LPS引發血清第一型介白素β的表現。正常小鼠受到大腸桿菌(DH5α)感染所引發的血清第一型介白素β,也可以被第二型纖溶酶原激活物抑制酶所抑制其表現。以上的實驗結果顯示:第二型纖溶酶原激活物抑制酶是重要的第一型介白素β熟成的負調控因子。
除此之外,我們實驗室進行了酵母雙雜交實驗發現一核醣核酸解旋脢為第二型纖溶酶原激活物抑制酶的結合蛋白。本篇研究也進一步探討此核醣核酸解旋脢與調節第一型介白素β的熟成關係。我們在人類胚腎細胞株HEK293T內證實該核醣核酸解旋脢是NLRP3發炎體的結合蛋白。當我們進一步利用RNA干擾技術(RNA interference)抑制該核醣核酸解旋脢的基因表現後,不管是在單純施以LPS刺激的小鼠巨噬細胞J774A.1細胞株或是小鼠骨巨噬細胞中都能提高成熟型第一型半胱天冬酶(mature caspase-1) 活性以及成熟型第一型介白素β (mature IL-1β)的釋放,卻不影響上游前第一型介白素β核醣核酸 (pro-IL-1β mRNA)的合成;反之,當我們在小鼠巨噬細胞J774A.1細胞株中過度表現其核醣核酸解旋脢的時候,可以抑制LPS加ATP所造成的成熟型第一型半胱天冬酶(mature caspase-1) 活性以及成熟型第一型介白素β (mature IL-1β)的釋放,這指出該核醣核酸解旋脢可能調控發炎體活化。另外我們也發現受LPS刺激的核醣核酸解旋脢會從細胞核往細胞質移動並且和NLRP3 蛋白有重和的情形。從以上的實驗,我們認為該核醣核酸解旋脢能夠負調控NLRP3發炎體的活性。
zh_TW
dc.description.abstractThe innate immunity is the first defense when hosts encounter pathogens or sense danger signals released from stressed or damaged tissues. Recently, a novel system named the inflammasome, a multiple protein complex for caspase-1 activation, has been characterized and has been proved to play a critical role in host defense against bacterial and viral infection. Activation of the inflammasome leads to cleavage of pro- inflammatory cytokines, IL-1β and IL-18 into their active forms.
Previous studies demonstrated that mice with Ikkβ deletion in myeloid cells (Ikkβ) are more susceptible to LPS-induced septic shock in a IL-1β-dependent manner. In addition, PAI-2, a NF-κB mediated gene, suppressed IL-1β production in Ikkβ bone marrow-derived macrophages (BMDMs) after LPS treatment, indicating that PAI-2 inhibits LPS-induced IL-1β in macrophages. However, the physiological role of PAI-2 remains unknown. To this end, we generated transgenic mice that specifically expressed PAI-2 in myeloid cells, then crossed this transgenic mice with Ikkβ mutant mice to examine whether the restoration of PAI-2 in Ikkβ mice can resist LPS-induced septic shock. We found that increased IL-1β production in IKKβ deficient mice was suppressed by PAI-2 in BMDMs and neutrophils, wherein they are caspase-1-dependent and independent, respectively. In addition, PAI-2 expression decreased plasma IL-1β in Ikkβ mice after LPS challenge. We also demonstrated that transgenic PAI-2 mice had lower levels of plasma IL-1β and delayed median survival rate upon E. coli infection. Together, our results confirm that PAI-2 is a negative regulator in physiological inflammation.
We previously showed that DDX27, a DEAD box-containing protein, was obtained from a yeast two-hybrid screening using PAI-2 as bait. Ablation of DDX27 in THP-1 macrophages largely enhanced caspase-1 activity and IL-1β production solely upon LPS challenge, suggesting that DDX27 is involved in negative regulation of the inflammasome activation. Here, we demonstrated that DDX27 suppressed IL-1β maturation and caspase-1 activation after LPS+ATP challenge in J774A.1 macrophages whose PAI-2 gene is functional. In addition, enhanced IL-1β production was observed in DDX27-deficient J774A.1 cells and BMDMs in response to LPS. Furthermore, we found that DDX27 associated with NLRP3 in co-immunoprecipitation assays. We further confirmed wild type, but not nuclear export-defective DDX27 mutant, translocated from the nucleus to the cytosol and co-localized with NLRP3 upon LPS treatment in J774A.1 cells. These results suggest that DDX27 plays a negative regulator of NLRP3 inflammasome activation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:49:34Z (GMT). No. of bitstreams: 1
ntu-102-R00448001-1.pdf: 3355120 bytes, checksum: a12649b42a93901efc5cab907ce66f7b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 1
摘要 2
Abstract 4
Contents 6
Introduction 9
Inflammasomes 9
Structure of the inflammasomes 10
Regulation of the inflammasomes 11
NF-κB signaling 13
NF-κB signaling and the inflammasomes 14
Sepsis 14
Sepsis and inflammasomes 15
PAI-2 16
Overview of the DEAD RNA Helicase family 17
The helicase core 18
The DEAD-box proteins and the immune system 19
DDX27 19
Specific aims 21
Materials and Methods 22
Reagents 22
Plasmids 23
Mice 23
Cell culture and transfection 25
Preparation of pseudotyped lentiviruses 25
Isolation of peritoneal macrophages and neutrophils 26
Preparation of Bone Marrow Derived Macrophages 26
Enzyme-linked immunosorbent assay (ELISA) 27
Total RNA extraction and Reverse Transcription Quantitative PCR 28
Preparation of whole cell lysate 29
Measurement of secreted cytokines and caspase-1 30
Preparation of nuclear and cytosolic extracts 30
Immunoblotting 31
Immunoprecipitation 32
Immunofluorescence staining 32
Results 34
Part 1. The physiological role of PAI-2 in LPS-induced sepsis 34
Generation of transgenic mice that specifically express PAI-2 in myeloid cells 34
PAI-2 suppresses IL-1β secretion in IkkβΔ macrophages after LPS challenge 35
PAI-2 suppresses IL-1β secretion in LPS-stimulated IkkβΔ neutrophils 36
PAI-2 inhibits plasma IL-1β production in IkkβΔ mice challenged with LPS 37
PAI-2 blunts the plasma IL-1β secretion in E.coli-infected mice 38
PAI-2 improves the survival of IkkβF/F mice after E. coli infection but this effect is still not significant 38
Part2. The role of DDX27 in NLRP3 inflammasome activation 39
Knockdown of DDX27 enhanced LPS-induced inflammasome activity in J774A.1 macrophages 39
Depletion of DDX27 in BMDMs induces IL-1β production after LPS stimulation 41
Overexpression of DDX27 reduced NLRP3 inflammasome activity in J774A.1 macrophages in response to LPS+ATP 42
DDX27 associates with NLRP3 when overexpressed in HEK293T 43
DDX27 translocates to the cytosol and colocalizes with NLRP3 in J774A.1 macrophages in response to LPS 44
Discussion 47
Part 1. The physiologicl role of PAI-2 in LPS-induced sepsis 47
Part2. The role of DDX27 in NLRP3 inflammasome activation 50
Figures 55
Figure 1. PAI-2 specific expresses in peritoneal macropgages, neutrophils and BMDMs in transgenic mice. 55
Figure 2. Overexpression of PAI-2 suppressed IL-1β secretion in IkkβΔ BMDMs after LPS treatment. 56
Figure3. Transgenic PAI-2 suppresses IL-1β secretion in LPS-stimulated IkkβΔ neutrophils. 57
Figure 4. PAI-2 suppresses plasma IL-1β production in IkkβΔ mice after LPS challenge. 58
Figure 5. PAI-2 suppresses plasma IL-1β secretion in vivo after E. coli infection. 59
Figure6. PAI-2 can improve the survival of mice after E.coli infection but this effect is not significant. 60
Figure 7. LPS enhances IL-1β maturation in DDX27 knockdown J774A.1 cells. 61
Figure 8. Knockdown of DDX27 induces IL-1β production in BMDMs after LPS stimulation. 62
Figure 9. LPS+ATP-induced IL-1β maturation is suppressed in DDX27 overexpressing J774A.1 macrophages. 63
Figure 10. DDX27 associates with NLRP3 when overexpressed in HEK293T cells. 64
Figure 11. LPS induces wild type DDX27, but not NES mutant, translocation from the nucleus to the cytosol in J774A.1 macrophages. 66
Figure 12. LPS induces wild type DDX27, but not DDX27-NES mutant, translocation to the cytosol and co-localizates with NLRP3 in J774A.1 macrophages. 67
Appendices 68
Appendix A. Molecular compositions of the inflammasomes. 68
Appendix B. Two signals are required for NLRP3 inflammasome activation and IL-1β production in macrophages. 69
Appendix C. Schematic diagram of DDX27. 70
Appendix D. Microinjection procedure of transgenic PAI-2 mice . 71
References 72
dc.language.isoen
dc.subject發炎體zh_TW
dc.subjectinflammasomeen
dc.title第二型纖溶酶原激活物抑制酶在發炎體負調控的角色zh_TW
dc.titleThe role of PAI-2 in negative regulation of inflammasomeen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊性芳(Hsin-Fang Yang-Yen),顧家綺
dc.subject.keyword發炎體,zh_TW
dc.subject.keywordinflammasome,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved