Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘永寧
dc.contributor.authorBing-shiun Juoen
dc.contributor.author卓炳勳zh_TW
dc.date.accessioned2021-06-16T10:49:15Z-
dc.date.available2013-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citation[ 1 ] ASM Metals Handbook, 9th ed., Vol. 3, 1989, pp.792-798.
[ 2 ] 生井 亨, “新しい素形材-低熱膨張鋳造材,” 鋳鍛造と熱処理, Jan., 1989, pp. 21-28.
[ 3 ] C. E. Guillaume, C.R. Acad. Sci. (Paris), Vol. 125, 1897, pp. 235-243.
[ 4 ] ASM Metals Handbook, 8th ed., Vol. 8, 1973, pp. 413-.
[ 5 ] H. Masumoto, “On the Thermal Expansion of the Alloys of Iron, Nickel and Cobalt, and the Cause of the Small Expansibility of Alloys the Invar Type,” Science Repts., Tohoku Imp. Univ., 20, 1931, p. 101.
[ 6 ] 陳翔斌, 潘永寧, “冶金參數對低熱膨脹鑄鐵之性質影響研究”, 國立台灣大學機研所碩士論文, 1991.
[ 7 ] 林良清, “低熱膨脹合金鑄鐵之最新發展,” 鑄造月刊, 145期, 民國90年10月, pp. 6-10.
[ 8 ] H. Scott, “Expansion Properties of Low Expansion Fe-Ni-Co Alloys,” Trans. AIME, Inst Metals Div, 1930, pp. 506-537.
[ 9 ] 旗手 稔, 炭本治喜, 中村幸吉, “Fe-Ni-C系低熱膨張材の平均線膨張係数に及ぼすC, Niの影響,” 日本金屬學會誌, 第54卷, 第9号, 1990, pp. 1036-1040.
[ 10 ] 榎本新一, “低熱膨張鋳鉄(ノビナイト)について” 鋳物, 第61卷, 第9号, 1989, pp. 628-631.
[ 11 ] 旗手 稔, 塩田俊雄, 炭本治喜, 中村幸吉, “低熱膨張鋳鉄の平均線膨張係数に及ぼす黑鉛の影響,” 鋳物, 第66卷, 第11号, 1994, pp. 809-814.
[ 12 ] M. Tsuda, J. of The Iron and Steel of Japan, 80, 12, 1994, p. 994.
[ 13 ] 翁林昭, “超低熱膨脹合金鑄鐵之研製及其耐熱震研究,” 大同工學院材料所碩士論文, 1990.
[ 14 ] E. N. Pan, S. P. Chen, C. R. Loper, Jr., “Influence of Metallurgical Parameters on Low Thermal Expansion Austenitic Cast Irons,” AFS Trans., Vol. 101, 1993, pp. 293-303.
[ 15 ] D. Venugopalan, S. Sahu, “Thermal Expansion Properties of Cast Invar-Type Alloys,” AFS Trans., Vol. 105, 1997, pp. 83-87.
[ 16 ] 旗手 稔, 塩田俊雄, 炭本治喜, 中村幸吉, “低熱膨張鋳鉄の平均線膨張係数に及ぼす熱處理の效果,” 鋳物, 第67卷, 第11号, 1995, pp. 775-781.
[ 17 ] R. P. Skelton, “Introduction to Thermal Shock”, High Temp. Technol., vol. 8, 1990, pp. 78-88.
[ 18 ] 潘永寧,“耐熱鑄鐵之高溫冶金及應用”,台灣大學機械所講義,2002。
[ 19 ] Y. J. Park, R. B. Gundlach, R. G. Thomas, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans., vol. 93, 1985, pp. 415-422.
[ 20 ] Y. J. Park, R. B. Gundlach and J. F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans., vol. 95, 1987, pp. 267-272.
[ 21 ] K. Rohrig, “Thermal Fatigue of Gray and Ductile Irons”, AFS Trans., vol. 86, 1978, pp. 75-88.
[ 22 ] 羅俊祥, 潘永寧, “化學組成及熱處理對於低熱膨脹鑄鐵之性能影響研究”, 國立台灣大學機研所碩士論文, 2002.
[ 23 ] 洪文琦, 潘永寧, “低熱膨脹鑄鐵之切削性研究”, 國立台灣大學機研所碩士論文, 2003.
[ 24 ] 林明山, 潘永寧, “低熱膨脹鑄鐵之冶金特性研究”, 國立台灣大學機研所碩士論文, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61146-
dc.description.abstract本研究是以B1系列(1.8%C, 1.8%Si, 30%Ni, 5%Co)、B2系列(2.0%C, 1.8%Si, 35%Ni)及B3系列(2.0%C, 2.0%Si, 30%Ni, 5%Co)三種不同化學組成之合金經過不同均質化熱處理後,進行熱循環試驗,再量測尺寸變化量以及形狀變化量,以評估不同合金之尺寸穩定性,此外,並與一般球墨鑄鐵及304不銹鋼進行比較。
實驗結果顯示,不同合金成分及均質化熱處理條件之熱膨脹鑄鐵合金其長度變化率(0% ~ 0.044%)均遠低於一般球墨鑄鐵(0.4853%)以及304不鏽鋼(0.6817%);就寬度變化率而言,低熱膨脹鑄鐵合金(0.0055% ~ 0.0268%)亦遠低於一般球墨鑄鐵(0.0863%)以及304不鏽鋼(0.1877%),但厚度變化率則差異不大,在熱循環試驗前後低熱膨脹鑄鐵合金與一般球墨鑄鐵及不鏽鋼均在(0%~0.0995%)之間。另一方面,就不同低熱膨脹鑄鐵合金而言,熱循環試驗前後之尺寸變化量均非常微量,其中最大長度變化量為0.030 mm,最大寬度之變化量則為0.005 mm,而厚度變化量則僅有0.002 mm,因此以試片之形狀變化來進一步討論合金之尺寸安定性。
低熱膨脹鑄鐵合金之最大形狀變化量為B2系列,其鑄態(219.71μm)小於一般球墨鑄鐵(634.01μm) 及304不鏽鋼 (428.93μm)。而比較相同合金成分下施以不同均質化熱處理條件之結果為,在B1系列(1.8%C, 1.8%Si, 30%Ni, 5%Co)中,熱循環試驗前後之形狀變化量依下列順序遞減:B1-T0 (156.93μm) > B1-T1 (63.25μm) > B1-T4 (27.94μm) > B1-T2 (25.77μm) > B1-T3 (15.56μm) > B1-T6 (7.41μm) ,而熱膨脹係數(α30~200)值係依下列順序遞減:B1-T0 (5.87x10-6) > B1-T1 (5.74x10-6/oC) > B1-T4 (5.19x10-6/oC) > B1-T2 (4.67x10-6/oC) ≈ B1-T3 (4.69x10-6/oC) > B1-T6 (1.72 10-6/oC) ,結果顯示兩者之變化趨勢相同。在B2系列中,形狀變化量依下列順序遞減:B2-T0 (219.71μm) > B2-T1 (86.14μm) > B2-T4 (56.96μm) > B2-T2 (33.25μm) > B2-T3 (24.13μm) ,而熱膨脹係數(α30~200)值係依下列順序遞減:B2-T0 (7.51 x10-6/oC) ≈ B2-T1 (7.87 x10-6/oC) > B2-T4 (7.64 x10-6/oC) > B2-T2 (6.09 x10-6/oC) > B2-T3 (5.83 x10-6/oC),兩者之變化趨勢亦相同;在B3系列中,形狀變化量依下列順序遞減:B3-T0 (178.15μm) > B3-T1 (61.40μm) > B3-T4 (46.48μm) > B3-T3 (30.26μm) > B3-T2 (28.20μm),而熱膨脹係數(α30~200)值係依下列順序遞減:B3-T0 (8.28x10-6/oC) > B3-T1 (7.93x10-6/oC) > B3-T2 (7.64x10-6/oC) > B3-T4 (6.62x10-6/oC) > B3-T3 (6.44x10-6/oC),其中除了B3-T2之變化量較預期為低或熱膨脹係數(α30~200)值較預期為高外,兩者之趨勢亦大致相同,推斷B3-T2之相關數據可能為量測誤差。
其結果顯示經過均質化熱處理可以改善Ni的偏析狀況及固溶C當量,所以會改變(降低)熱膨脹係數(α)值,因此會改善尺寸穩定性。其中,若熱膨脹係數(α值)下降,則由熱循環試驗中所形成之熱應力(σth)愈小,因此由熱循環應力所造成的形狀變化量亦愈小。因此欲獲致較佳之尺寸穩定性,鑄件可實施均質化熱處理,且以(1200oC-4hr/750oC-2hr)之熱處理條件為最佳。
zh_TW
dc.description.abstractIn this study, three low thermal expansion ductile cast iron series, B1(1.8%C, 1.8%Si, 30%Ni, 5%Co), B2(2.0%C, 1.8%Si, 35%Ni) and B3(2.0%C, 2.0%Si, 30%Ni, 5%Co) with different chemical compositions and homogenization heat treatment conditions, together with a regular ductile cast iron and a 304 stainless steel, were selected for constrained thermal cyclic tests (30~200oC) to evaluate the dimensional stability of the alloys studied by comparing the changes in dimensions and shape of the test specimens.
The experimental results indicate that the change rates along the longitudinal axis (length) for low thermal expansion cast irons with different chemical compositions and homogenization heat treatment conditions (nil~0.044%) are substantially lower than those of a regular ductile cast iron (0.4853%) and the 304 stainless steel (0.6817%). Also, the change rates along the transverse axis (width) for low thermal expansion cast irons (0.0055~0.0268%) are substantially lower than those of a regular ductile cast iron (0.0863%) and the 304 stainless steel (0.1877%). On the other hand, no clear difference in the change rate in thickness were obtained for all the alloys investigated, all within the range of nil~0.0995%. Due to the fact that the dimensional changes of low thermal expansion cast irons are quite minute, with the maximum values of 0.03mm, 0.005mm and 0.002mm for length, width and thickness, respectively, the degree of distortion or shape change of the test specimens was used as a criterion to evaluate the dimensional stability of the alloys investigated.
Among the three series of low thermal expansion ductile cast irons, series B2 (219.71μm) exhibited the largest shape change, which was followed by series B3 (178.15μm) and then series B1 (156.93μm). Nevertheless, all three series of low thermal expansion ductile cast irons are still well below those of the 304 stainless steel (634.01μm) and the regular ductile cast iron (428.93μm). Furthermore, correlation between the amount of shape change after thermal cyclic tests and α30-200oC value shows a similar trend. Take series A as an example, the degree of shape change follows the following sequence: B1-T0(156.93μm) – B1-T1(63.25μm) – B1-T4(27.94μm) – B1-T2(25.77μm) – B1-T3(15.56μm) –B1-T6(7.41μm) verse the α30-200oC value of B1-T0 (5.87x10-6/oC) –B1-T1(5.74x10-6/oC) –B1-T4(5.19x10-6/oC) –B1-T2(4.67x10-6/oC) –B1-T3(4.69x10-6/oC) –B1-T6(1.72x10-6/oC). However, it has to be noticed that alloy B1-T6 (1200oC-4hr/750oC-2hr) exhibits a very low α30-200oC value of 1.72x10-6/oC, as a result, the degree of shape change is also very small, 7.41μm. Similar results were also obtained for series B2 and B3.
In conclusion, the homogenization heat treatment may improve the degree of Ni segregation and also change the amount of C content dissolved in the matrix, which in turn will alter (reduce) the α value. As a result, the dimensional stability of the alloys will be affected. The present results indicate that the alloy with the homogenization heat treatment of 1200oC-4hr/750oC-2hr can obtain the lowest α value, and hence, is the alloy having the best dimensional stability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:49:15Z (GMT). No. of bitstreams: 1
ntu-102-R00522721-1.pdf: 2777944 bytes, checksum: 9d4ed4bce93901dee413ace61e95ff64 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
第 1 章 緒論 1
第 2 章 文獻探討 5
2.1 低熱膨脹鑄鐵之開發過程及特性探究 5
2.1.1 開發過程 5
2.1.2 低熱膨脹特性之探究 6
2.2 影響熱膨脹係數之冶金及製程參數 8
2.2.1 合金元素的影響 8
2.2.2 熱處理的影響 9
2.3 殘留應力之原因及影響 9
2.3.1 鑄造應力分為三類:收縮應力、相變應力、熱應力。 10
2.3.2 殘留應力 (Residual stress) 11
2.4 尺寸穩定性 11
2.5 熱循環 12
2.5.1 熱循環試驗原理 12
2.5.2 熱循環之試驗方法 13
2.5.3 拘束型熱循環試驗 13
2.5.4 熱應力之分析 14
第 3 章 實驗方法 20
3.1 研究目的 20
3.2 實驗設計 20
3.3 實驗方法 21
3.3.1 合金設計 21
3.3.2 模型設計及熔鑄作業 21
3.3.3 熱膨脹係數量測 21
3.3.4 熱處理 22
3.3.5 熱循環試驗 22
3.3.6 熱循環試片之尺寸量測 23
3.3.7 熱循環試片之形狀量測 23
第 4 章 實驗結果 31
4.1 顯微組織分析 31
4.2 熱膨脹係數量測 31
4.3 熱循環試驗之試片變形機制 32
4.4 尺寸變化量探討 33
4.5 形狀變化量探討 33
第 5 章 結論 49
參考文獻 51
dc.language.isozh-TW
dc.title化學組成及熱處理條件對於低熱膨脹鑄鐵尺寸穩定性之影響zh_TW
dc.titleInfluence of Chemical Composition and Heat Treatment on Dimensional Stability of Low Thermal Expansion Cast Ironsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許正勳,楊榮顯
dc.subject.keyword低熱膨脹合金,均質化熱處理,熱循環,尺寸穩定性,zh_TW
dc.subject.keywordlow thermal expansion ductile cast iron,homogenization heat treatment conditions,thermal cyclic tests,dimensional stability,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved