Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61141Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳 | |
| dc.contributor.author | Zih-Hao You | en |
| dc.contributor.author | 尤子豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:48:56Z | - |
| dc.date.available | 2018-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | Chen, F. Y. and G. W. Zhang (2012), The module partition approach for
the personalized products and production. 14th International Manufacturing Conference in China, IMCC2011, October 13, 2011 - October 15, 2011, Tianjin, China, Trans Tech Publications Ltd. Desai, A. and A. Mital (2003), 'Evaluation of disassemblability to enable design for disassembly in mass production,' International Journal of Industrial Ergonomics 32(4): 265-281. Ericsson, A. and G. Erixon (1999), Controlling design variants: Modular product platforms. Gao, F., G. Xiao, et al. (2008), 'Product interface reengineering using fuzzy clustering.' CAD Computer Aided Design, 40(4): 439-446 Gu, P., M. Hashemian, et al. (1997), 'Integrated modular design methodology for life-cycle engineering.' CIRP Annals - Manufacturing Technology 46(1): 71-74. Gu, P. and S. Sosale (1999), 'Product modularization for life cycle engineering.' Robotics and Computer-Integrated Manufacturing 15(5): 387-401. Ji, Y.-J., X.-B. Chen, et al. (2012), 'Modular design involving effectiveness of multiple phases for product life cycle.' 1-14. Kim, D.-W., K. H. Lee, et al. (2003), 'Fuzzy cluster validation index based on inter-cluster proximity.' Pattern Recognition Letters 24(15): 2561-2574. Lai, X. and J. K. Gershenson (2010), DSM-based product representation for retirement process-based modularity. 2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009, August 30, 2009 - September 2, 2009, San Diego, CA, United states, American Society of Mechanical Engineers. Newcomb, P. J., B. Bras, et al. (1998), 'Implications of modularity on product Design for the Life Cycle.' Journal of Mechanical Design, Transactions of the ASME 120(3): 483-491. Papasavva, S., A. Coyle, et al. (2003), Development of recycling guidelines for PEM fuel cell systems. 2003 SAE World Congress, March 3, 2003 - March 6, 2003, Detroit, MI, United states, SAE International. Recchioni, M., F. Mandorli, et al. (2007), Life-cycle assessment simplification for modular products. 14th CIRP Conference on Life Cycle 123 Engineering: Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, June 11, 2007 - June 13, 2007, Tokyo, Japan, Springer Science and Business Media, LLC. Smith, S. and C.-C. Yen (2010), Green product design through product modularization using atomic theory, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom, Elsevier Ltd. Tchertchian, N., D. Millet, et al. (2011), Modular grouping exploration to design remanufacturable products. 18th CIRP International Conference on Life Cycle Engineering: Glocalized Solutions for Sustainability in Manufacturing, May 2, 2011 - May 4, 2011, Braunschweig, Germany, Springer Science and Business Media, LLC. Tseng, H.-E., C.-C. Chang, et al. (2008), 'Modular design to support green life-cycle engineering.' Expert Systems with Applications 34(4): 2524-2537. Umeda, Y., S. Fukushige, et al. (2008), 'Product modularity for life cycle design.' CIRP Annals - Manufacturing Technology 57(1): 13-16. Wang, C.-S., P.-Y. Lin, et al. (2010), Green Quality Function Development and modular Design Structure Matrix in product development. 2010 14th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2010, April 14, 2010 - April 16, 2010, Shanghai, China, IEEE Computer Society. Xiaoyan, T., K. Fankai, et al. (2009), Methods supporting product modular design for assembly. 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009, April 11, 2009 - April 12, 2009, Zhangjiajie, Hunan, China, IEEE Computer Society. Xie, X. L. and G. Beni (1991), 'A Validity Measure for Fuzzy Clustering.' IEEE Trans. Pattern Anal. Mach. Intell. 13(8): 841-847. Yang, Q., S. Yu, et al. (2011), 'A modular eco-design method for life cycle engineering based on redesign risk control.' International Journal of Advanced Manufacturing Technology 56(9-12): 1215-1233. Zhang, J.-X., W.-W. Wang, et al. (2011), Module design based on life cycle design. 2011 International Academic Conference on Machinery, Materials Science and Engineering Applications, MMSE 2011, July 15, 2011 - July 16, 2011, Wuhan, China, Trans Tech Publications. 林孝忠 (2004), 群集中心具有體積之模糊分群績效比較. 資訊管理 研究所, 成功大學. 碩士論文. 張庭瑞 (2010), 模糊分類在產品模組化開發之研究. 南開學報. 第七 卷第一期. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61141 | - |
| dc.description.abstract | 消費者需求的改變以及科技技術的進步。高科技的產品必須快速的更新和製
造才能符合消費者的需求。同時,產品必須符合新的環境法規以保護環境。因此, 必須發展新的設計方法因應新產品的需求。 本論文提出了一種新的多目標綠色模組化設計方法。並利用Visual Basic 2010 設計了一個使用者介面,提供消費者輸入產品資訊,使用者介面會依照輸 入的產品資訊自動選擇產品模組,以滿足功能以及環境保護的需求。本論文的方 法考慮了多種產品零件的相互關係,並利用零件對模組的歸屬度,將其分群成高 獨立性的模組,以滿足功能需求。本論文的方法提供了績效指標的評估,幫助使 用者選擇最佳的功能模組,接著加入產品零件的環境衝擊指數(Eco-Indicator 99) 的考量,評估最佳功能模組對環境的衝擊,並利用fuzzy c-means 分群演算法將 最佳功能模組進一步分群成綠色模組,使產品能兼顧功能以及環境保護的需求。 最後,本論文以檯燈以及電子辭典為例,利用本論文提出的方法進行綠色模 組化設計。設計者可以利用此方法為其他產品提供新的模組化設計。 | zh_TW |
| dc.description.abstract | Customer needs are changing. Technology is also advancing. As a result,
customers want new high-tech products that can be developed quickly. At the same time, customers want products that protect the environment. Products must also meet new environmental regulations that protect the environment. As a result, new design methods are needed to create new products. This thesis develops a new multi-objective green modular design method. A Visual Basic 2010 user interface was created to provide users the ability to input product information. Product modules are chosen automatically to meet both functional and environmental requirements, using the input product information. The method considers relationships between each pair of product components, groups product components into highly independent modules, by multiple component attributes, to meet functional requirements. The method gives users the ability to select the best functional modules, based upon a validity index, uses an Eco-Indicator 99 environmental impact index to evaluate the environmental impacts of selected functional modules, uses fuzzy c-means functions to group selected functional modules into green modules, and thereby creates products that meet both functional and environmental requirements. This thesis uses the method to create new modular designs for a lamp and an electronic dictionary. Designers can use the method to create new modular designs for other new products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:48:56Z (GMT). No. of bitstreams: 1 ntu-102-R00522639-1.pdf: 4378560 bytes, checksum: dc9418eb4e4efa4c9d7b0bbd75f87e2a (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書......................................................................................................... i
誌謝................................................................................................................................ ii 摘要.............................................................................................................................. iii Abstract ......................................................................................................................... iv 目錄................................................................................................................................ v 圖目錄........................................................................................................................ viii 表目錄............................................................................................................................ x 第一章 緒論................................................................................................................ 1 1.1 研究動機....................................................................................................... 1 1.2 研究目的....................................................................................................... 1 第二章 文獻回顧........................................................................................................ 2 2.1 模組化設計................................................................................................... 2 2.2 模糊分群..................................................................................................... 18 2.3 文獻回顧小結............................................................................................. 23 第三章 研究方法...................................................................................................... 27 3.1 產品的零件聯繫關係................................................................................. 27 3.2 模組化設計範圍......................................................................................... 27 3.3 原子理論........................................................................................................ 29 3.3.1 距離矩陣列表D .............................................................................. 30 3.3.2 總聯繫矩陣列表TR ....................................................................... 33 3.3.3 電荷矩陣列表.................................................................................. 34 vi 3.3.4 力量矩陣列表F .............................................................................. 37 3.4 模糊分群Fuzzy C-Means ............................................................................. 40 3.4.1 Fuzzy 距離矩陣列表 ....................................................................... 41 3.4.2 第一階段分群.................................................................................. 42 3.5 績效指標..................................................................................................... 45 3.6 綠色目標Eco-Indicator 99......................................................................... 47 3.7 第二階段分群............................................................................................. 49 3.8 研究流程..................................................................................................... 53 3.9 介面使用與輸出......................................................................................... 55 第四章 案例研究...................................................................................................... 60 4.1 案例一 檯燈................................................................................................ 60 4.1.1 模組化設計範圍.............................................................................. 60 4.1.2 距離矩陣列表D .............................................................................. 62 4.1.3 總聯繫矩陣列表與電荷矩陣列表.................................................. 65 4.1.4 力量矩陣列表.................................................................................. 67 4.1.5 Fuzzy 距離矩陣列表 ....................................................................... 70 4.1.6 第一階段分群-功能模組.............................................................. 72 4.1.7 第二階段分群-綠色模組.............................................................. 74 4.1.8 討論.................................................................................................. 77 4.2 案例二 電子辭典........................................................................................ 80 4.2.1 模組化設計範圍.............................................................................. 80 4.2.2 距離矩陣列表.................................................................................. 83 4.2.3 總聯繫矩陣列表與電荷矩陣列表.................................................. 90 4.2.4 力量矩陣列表.................................................................................. 95 4.2.5 Fuzzy 距離矩陣列表 ..................................................................... 103 vii 4.2.6 第一階段分群-功能模組............................................................ 107 4.2.7 第二階段分群-綠色模組............................................................ 112 4.2.8 討論................................................................................................ 115 第五章 結論與未來展望........................................................................................ 119 5.1 結論........................................................................................................... 119 5.2 未來展望................................................................................................... 121 第六章 參考文獻.................................................................................................... 122 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最佳化設計 | zh_TW |
| dc.subject | 綠色設計 | zh_TW |
| dc.subject | 模組化設計 | zh_TW |
| dc.subject | 原子理論 | zh_TW |
| dc.subject | 模糊邏輯 | zh_TW |
| dc.subject | optimal design | en |
| dc.subject | green design | en |
| dc.subject | modular design | en |
| dc.subject | atomic theory | en |
| dc.subject | fuzzy logic | en |
| dc.title | 一個多目標綠色模組化設計的方法 | zh_TW |
| dc.title | A Method of Multi-Objective Green Modular Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉正良,莊嘉揚 | |
| dc.subject.keyword | 最佳化設計,綠色設計,模組化設計,原子理論,模糊邏輯, | zh_TW |
| dc.subject.keyword | optimal design,green design,modular design,atomic theory,fuzzy logic, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 4.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
