請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Hsun-Chi Chan | en |
| dc.contributor.author | 詹勳奇 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:48:23Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | Chapter 1:
[1] J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999). [2] K. R. Chu, Lecture Notes on Classical Electrodynamics (2012). [3] J. B. Pendry, 'Negative refraction,' Contemp. Phys. 45, 191 (2004). [4] V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of ε and μ,' Soviet Physics Uspekhi 10, 509 (1968). [5] V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010). [6] E. Hecht, Optics , 4th edition (Addison Wesley, 2002) [7] 林明瑞, 物理奧林匹亞試題, 物理雙月刊 31, 596 (2009) [8] R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77 (2001). [9] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, 'Extremely Low Frequency Plasmons in Metallic Mesostructures,' Phys. Rev. Lett. 76, 4773 (1996). [10] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' Micro. Theory, IEEE T. 47, 2075 (1999). [11] W. J. Padilla, D. N. Basov, and D. R. Smith, 'Negative refractive index metamaterials,' Mater. Today 9, 28 (2006). [12] J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, 'Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,' Phys. Rev. Lett. 95, 223902 (2005). [13] C. M. Soukoulis, S. Linden, and M. Wegener, 'Negative Refractive Index at Optical Wavelengths,' Science 315, 47 (2007). [14] V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, 'Negative index of refraction in optical metamaterials,' Opt. Lett. 30, 3356 (2005). [15] S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, 'Near-infrared double negative metamaterials,' Opt. Express 13, 4922 (2005). [16] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, 'Three-dimensional optical metamaterial with a negative refractive index,' Nature 455, 376 (2008). [17] S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, 'A single-layer wide-angle negative-index metamaterial at visible frequencies,' Nat. Mater. 9, 407 (2010). [18] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, 'Magnetic Response of Metamaterials at 100 Terahertz,' Science 306, 1351 (2004). [19] J. B. Pendry, D. Schurig, and D. R. Smith, 'Controlling Electromagnetic Fields,' Science 312, 1780 (2006). [20] N. Engheta, 'Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials,' Science 317, 1698 (2007). [21] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, 'Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,' Science 325, 1513 (2009). [22] X. Zhang and Z. Liu, 'Superlenses to overcome the diffraction limit,' Nat. Mater. 7, 435 (2008). [23] J. B. Pendry, 'Negative Refraction Makes a Perfect Lens,' Phys. Rev. Lett. 85, 3966 (2000). [24] N. Fang, H. Lee, C. Sun, and X. Zhang, 'Sub-diffraction-limited optical imaging with a silver superlens,' Science 308, 534 (2005). [25] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, 'Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,' Science 315, 1686 (2007). [26] C. M. Soukoulis and M. Wegener, 'Optical Metamaterials—More Bulky and Less Lossy,' Science 330, 1633 (2010). [27] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, 'Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,' Nat. Mater. 11, 426 (2012). [28] N. I. Zheludev, 'The Road Ahead for Metamaterials,' Science 328, 582 (2010). [29] N. I. Zheludev and Y. S. Kivshar, 'From metamaterials to metadevices,' Nat. Mater. 11, 917 (2012). Chapter 2: [1] A.Talflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition (Artech House, Boston, 2005). [2] Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' Antenn. Propag., IEEE T. 14, 302 (1966). [3] J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999). [4] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007) Chapter 3: [1] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, 'Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,' Phys. Rev. B 65, 195104 (2002). [2] A. Andryieuski, R. Malureanu, and A. V. Lavrinenko, 'Wave propagation retrieval method for metamaterials: Unambiguous restoration of effective parameters,' Phys. Rev. B 80, 193101 (2009). [3] D. R. Smith and J. B. Pendry, 'Homogenization of metamaterials by field averaging (invited paper),' J. Opt. Soc. Am. B 23, 391 (2006). [4] S. Sun, S. T. Chui, and L. Zhou, 'Effective-medium properties of metamaterials: A quasimode theory,' Phys. Rev. E 79, 066604 (2009). [5] B.-I. Popa and S. A. Cummer, 'Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields,' Phys. Rev. B 72, 165102 (2005). [6] P.-Y. Chen, M. Farhat, and A. Alù, 'Bistable and Self-Tunable Negative-Index Metamaterial at Optical Frequencies,' Phys. Rev. Lett. 106, 105503 (2011). [7] D. J. Griffiths, Introduction to electrodynamics, 3rd edition (Prentice Hall, Upper Saddle River, N.J., 1999) [8] P. Markos and C. M. Soukoulis, Wave propagation (Princeton, New Jersey, 2008) [9] S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, 'Near-infrared double negative metamaterials,' Opt. Express 13, 4922 (2005). [10] W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. -Y. Guo, C. T. Hsiao, K. -Y. Yang, N. I. Zheludev, D. P. Tsai, 'Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,' Opt. Express 19, 12837 (2011). Chapter 4: [1] V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of ε and μ,' Sov. Phys. Uspekhi 10, 509 (1968). [2] J. B. Pendry, 'Negative Refraction Makes a Perfect Lens,' Phys. Rev. Lett. 85, 3966 (2000). [3] J. B. Pendry, D. Schurig, and D. R. Smith, 'Controlling Electromagnetic Fields,' Science 312, 1780 (2006). [4] R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77 (2001). [5] C. M. Soukoulis, S. Linden, and M. Wegener, 'Negative Refractive Index at Optical Wavelengths,' Science 315, 47 (2007). [6] W. J. Padilla, D. N. Basov, and D. R. Smith, 'Negative refractive index metamaterials,' Mater. Today 9, 28 (2006). [7] S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, 'A single-layer wide-angle negative-index metamaterial at visible frequencies,' Nat. Mater. 9, 407 (2010). [8] J. B. Pendry, 'A chiral route to negative refraction,' Science 306, 1353 (2004). [9] P.-Y. Chen, M. Farhat, and A. Alù, 'Bistable and Self-Tunable Negative-Index Metamaterial at Optical Frequencies,' Phys. Rev. Lett. 106, 105503 (2011). [10] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, 'Extremely Low Frequency Plasmons in Metallic Mesostructures,' Phys. Rev. Lett. 76, 4773 (1996). [11] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' Micro. Theory, IEEE T. 47, 2075 (1999). [12] J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, 'Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,' Phys. Rev. Lett. 95, 223902 (2005). [13] V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, 'Negative index of refraction in optical metamaterials,' Opt. Lett. 30, 3356 (2005). [14] S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, 'Near-infrared double negative metamaterials,' Opt. Express 13, 4922 (2005). [15] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, 'Three-dimensional optical metamaterial with a negative refractive index,' Nature 455, 376 (2008). [16] M. Wegener and S. Linden, 'Shaping optical space with metamaterials,' Phys. Today 63, 32 (2010). [17] V. M. Shalaev, 'Optical negative-index metamaterials,' Nat. Photonics 1, 41 (2007). [18] S. N. Burokur, A. Sellier, B. Kante, and A. d. Lustrac, 'Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,' Appl. Phys. Lett. 94, 201111 (2009). [19] S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, 'Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability,' Phys. Rev. Lett. 94, 037402 (2005). [20] W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. -Y. Guo, C. T. Hsiao, K. -Y. Yang, N. I. Zheludev, D. P. Tsai, 'Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,' Opt. Express 19, 12837 (2011). [21] A. Ourir and H. H. Ouslimani, 'Negative refractive index in symmetric cut-wire pair metamaterial,' Appl. Phys. Lett. 98, 113505 (2011). [22] J. Jin, The finite element method in electrodynamics (Wiley, New York, 2002) [23] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, 'Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,' Phys. Rev. B 65, 195104 (2002). [24] R. A. Depine and A. Lakhtakia, 'A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,' Micro. Opt. Techn. Let. 41, 315 (2004). [25] M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, 'The negative index of refraction demystified,' Eur. J. Phys. 23, 353 (2002). [26] D. K. Cheng, Field and Wave Electromagnetics, 2nd edition (Pearson, Taiwan, 2007). Chapter 5: [1] H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, 'Lagrange model for the chiral optical properties of stereometamaterials,' Phys. Rev. B 81, 241403 (2010). [2] N. Liu, H. Liu, S. Zhu, and H. Giessen, 'Stereometamaterials,' Nat. Photonics 3, 157 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61132 | - |
| dc.description.abstract | 我們提出一種新的負折射超穎材料(Negative index metamaterial),其單元是由一對站立 U 形環所組成的人工原子(meta-atom),並用有限元素法(Finite element method)對此系統進行數值模擬與分析。此種超穎材料的等效介電常數(effective permittivity)與導磁係數(effective permeability)在近紅外波長區間內[1080nm~1260nm]同時為負值,因此在相當寬的頻寬內(180nm)具有等效的負折射率(n~-2)。此外,我們還優化系統的幾何參數,使得系統的等效阻抗與外界空氣匹配(impedance matching , z~1),並且系統的品質因子(figure of merit)在1200nm左右達到最高值(FOM=20.6)。最後,我們用這個超穎材料做了一個單層平板和一個楔形稜鏡,並對這兩個系統
做了數值模擬(numerical simulations),証明這種超穎材料的確具有負折射現象。 | zh_TW |
| dc.description.abstract | Negative index metamaterial composed of the upright split-ring pair as one meta-atom has been investigated numerically by finite element method. This new metamaterial
possesses both negative effective permittivity and negative effective permeability overlapping in the near-infrared region [1080nm~1260nm], hence exhibiting a negative index of refraction (n~-2) with a broad double negative bandwidth (180nm). We also tune the geometric structure parameters to optimize the metamaterial, thus achieving a good impedance matching (z~1) and a rather high figure of merit (FOM=20.6) at the wavelength around 1200nm. Finally, numerical simulations demonstrate that both single-layer system and wedge-shape lens made of the split-ring pairs show the negative refraction phenomenon. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:48:23Z (GMT). No. of bitstreams: 1 ntu-102-R00222084-1.pdf: 4363364 bytes, checksum: 9ae8f38d21a378a2d0a1a27360ca1bb6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents
致謝 i 摘要 iii Abstract iv Contents v List of Figures viii Chapter 1 Introduction 1 1.1 Introduction to Metamaterials 1 1.2 Fundamentals of Electrodynamics 2 1.2.1 The Drude Model 2 1.2.2 Plane Wave Equations 5 1.3 Left-Handed Materials 8 1.4 Brief History of Metamaterials 12 1.5 Applications of Metamaterials 16 References 20 Chapter 2 Simulation Methods 24 2.1 Finite-Difference Time-Domain Method 24 2.1.1 Maxwell's Equation in 3D 24 2.1.2 Yee's Algorithm 28 2.2 Finite Element Method 33 Galerkin’s Method 34 2.3 Some Practices by FDTD and FEM 38 2.3.1 Surface Plasmon Polaritons at a Metal-dielectric Interface 38 2.3.2 SPPs at a Insulator/Metal/Insulator Interface 39 2.3.3 Errors of S21 due to the mesh density 40 2.3.4 The Dispersion Relation of SPP at a Single Interface 41 References 42 Chapter 3 Effective Optical Parameters 43 3.1 Introduction 43 3.2 Transfer Matrix Method 45 3.2.1 The transfer matrix 45 3.2.2 The propagating matrix 47 3.3 The Retrieval Method 49 3.4 Benchmark 54 3.5 The upright U-shape ring 57 References 59 Chapter 4 Optical Negative Index Metamaterials by Upright Split-ring Pairs 61 4.1 Introduction 61 4.1.1 Motivations 67 4.2 Results and discussion 70 4.4 Summary 80 References 81 Chapter 5 Conclusions and Future Work 85 References 86 | |
| dc.language.iso | en | |
| dc.subject | 古典電磁理論 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 裂環共振器 | zh_TW |
| dc.subject | 雙負超穎材料 | zh_TW |
| dc.subject | double negative metamaterials | en |
| dc.subject | split-ring resonator | en |
| dc.subject | electromagnetic theory | en |
| dc.subject | numerical simulation | en |
| dc.title | 以電磁理論模擬探討與尋找新奇負折射超穎材料 | zh_TW |
| dc.title | Search for novel negative refraction index metamaterials
by electromagnetic simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉威志(Wei-Chih Liu),張之威(Chih-Wei Chang),藍永強(Yung-Chiang Lan),張書維(Shu-Wei Chang) | |
| dc.subject.keyword | 雙負超穎材料,裂環共振器,古典電磁理論,數值模擬, | zh_TW |
| dc.subject.keyword | double negative metamaterials,split-ring resonator,electromagnetic theory,numerical simulation, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
