Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorChun Hao Chaoen
dc.contributor.author趙俊豪zh_TW
dc.date.accessioned2021-06-16T10:47:47Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citationAksoy, E., Taboubi, S., Torres, D., Delbauve, S., Hachani, A., Whitehead, M.A., Pearce, W.P., Berenjeno-Martin, I., Nock, G., Filloux, A., et al. (2012). The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature immunology 13, 1045-1054.
Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R., and Bonifacino, J.S. (2004). Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. The Journal of cell biology 165, 123-133.
Barber, G.N. (2011). Cytoplasmic DNA innate immune pathways. Immunological reviews 243, 99-108.
Barton, G.M., and Kagan, J.C. (2009). A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature reviews Immunology 9, 535-542.
Blood, P.D., and Voth, G.A. (2006). Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America 103, 15068-15072.
Bonnard, M., Mirtsos, C., Suzuki, S., Graham, K., Huang, J., Ng, M., Itie, A., Wakeham, A., Shahinian, A., Henzel, W.J., et al. (2000). Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. The EMBO journal 19, 4976-4985.
Bujny, M.V., Ewels, P.A., Humphrey, S., Attar, N., Jepson, M.A., and Cullen, P.J. (2008). Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. Journal of cell science 121, 2027-2036.
Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J., and Volpe, F. (2000). Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature cell biology 2, 346-351.
Cao, Z., Henzel, W.J., and Gao, X. (1996). IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128-1131.
Carlton, J., Bujny, M., Peter, B.J., Oorschot, V.M., Rutherford, A., Mellor, H., Klumperman, J., McMahon, H.T., and Cullen, P.J. (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Current biology : CB 14, 1791-1800.
Chang, C.H., Lai, L.C., Cheng, H.C., Chen, K.R., Syue, Y.Z., Lu, H.C., Lin, W.Y., Chen, S.H., Huang, H.S., Shiau, A.L., et al. (2011). TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. The Journal of biological chemistry 286, 7043-7051.
Charoenthongtrakul, S., Gao, L., and Harhaj, E.W. (2012). The NLRP4-DTX4 axis: a key suppressor of TBK1 and innate antiviral signaling. Cellular & molecular immunology 9, 431-433.
Chen, L.F., Williams, S.A., Mu, Y., Nakano, H., Duerr, J.M., Buckbinder, L., and Greene, W.C. (2005). NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25, 7966-7975.
Clark, K., Takeuchi, O., Akira, S., and Cohen, P. (2011). The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. Proceedings of the National Academy of Sciences of the United States of America 108, 17093-17098.
Ferrao, R., Li, J., Bergamin, E., and Wu, H. (2012). Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor-interleukin-1 receptor superfamily. Science signaling 5, re3.
Ghai, R., Mobli, M., Norwood, S.J., Bugarcic, A., Teasdale, R.D., King, G.F., and Collins, B.M. (2011). Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proceedings of the National Academy of Sciences of the United States of America 108, 7763-7768.
Gokool, S., Tattersall, D., and Seaman, M.N. (2007). EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8, 1873-1886.
Goncalves, A., Burckstummer, T., Dixit, E., Scheicher, R., Gorna, M.W., Karayel, E., Sugar, C., Stukalov, A., Berg, T., Kralovics, R., et al. (2011). Functional dissection of the TBK1 molecular network. PloS one 6, e23971.
Gullapalli, A., Garrett, T.A., Paing, M.M., Griffin, C.T., Yang, Y., and Trejo, J. (2004). A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking. Molecular biology of the cell 15, 2143-2155.
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207.
Hacker, H., Tseng, P.H., and Karin, M. (2011). Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nature reviews Immunology 11, 457-468.
Hashimoto, C., Hudson, K.L., and Anderson, K.V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269-279.
Helgason, E., Phung, Q.T., and Dueber, E.C. (2013). Recent insights into the complexity of Tank-binding kinase 1 signaling networks: The emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS letters 587, 1230-1237.
Honda, K., Takaoka, A., and Taniguchi, T. (2006). Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349-360.
Husebye, H., Halaas, O., Stenmark, H., Tunheim, G., Sandanger, O., Bogen, B., Brech, A., Latz, E., and Espevik, T. (2006). Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. The EMBO journal 25, 683-692.
Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13.
Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Quill, H., and Schwartz, R.H. (1987). T-cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunological reviews 95, 113-135.
Kagan, J.C., and Medzhitov, R. (2006). Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955.
Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008). TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature immunology 9, 361-368.
Kang, J.Y., and Lee, J.O. (2011). Structural biology of the Toll-like receptor family. Annual review of biochemistry 80, 917-941.
Kawai, T., and Akira, S. (2008). Toll-like receptor and RIG-I-like receptor signaling. Annals of the New York Academy of Sciences 1143, 1-20.
Kawai, T., and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology 21, 317-337.
Kravchenko, V.V., Mathison, J.C., Schwamborn, K., Mercurio, F., and Ulevitch, R.J. (2003). IKKi/IKKepsilon plays a key role in integrating signals induced by pro-inflammatory stimuli. The Journal of biological chemistry 278, 26612-26619.
Kurten, R.C., Cadena, D.L., and Gill, G.N. (1996). Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008-1010.
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983.
Lieu, Z.Z., and Gleeson, P.A. (2010). Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. European journal of cell biology 89, 379-393.
Ma, X., Helgason, E., Phung, Q.T., Quan, C.L., Iyer, R.S., Lee, M.W., Bowman, K.K., Starovasnik, M.A., and Dueber, E.C. (2012). Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proceedings of the National Academy of Sciences of the United States of America 109, 9378-9383.
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428-435.
Medzhitov, R., and Janeway, C., Jr. (2000). Innate immune recognition: mechanisms and pathways. Immunological reviews 173, 89-97.
O'Neill, L.A., and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews Immunology 7, 353-364.
Ostuni, R., Zanoni, I., and Granucci, F. (2010). Deciphering the complexity of Toll-like receptor signaling. Cellular and molecular life sciences : CMLS 67, 4109-4134.
Palsson-McDermott, E.M., Doyle, S.L., McGettrick, A.F., Hardy, M., Husebye, H., Banahan, K., Gong, M., Golenbock, D., Espevik, T., and O'Neill, L.A.J. (2009). TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nature immunology 10, 579-U530.
Park, S.J., Huh, J.W., Kim, Y.H., Kim, J.S., Song, B.S., Lee, S.R., Kim, S.U., Kim, H.S., Imakawa, K., and Chang, K.T. (2011). Quantitative analysis of retromer complex-related genes during embryo development in the mouse. Molecules and cells 31, 431-436.
Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499.
Prosser, D.C., Tran, D., Schooley, A., Wendland, B., and Ngsee, J.K. (2010). A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling. Traffic 11, 1347-1362.
Rao, Y., and Haucke, V. (2011). Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cellular and molecular life sciences : CMLS 68, 3983-3993.
Schwarz, D.G., Griffin, C.T., Schneider, E.A., Yee, D., and Magnuson, T. (2002). Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. Molecular biology of the cell 13, 3588-3600.
Sorkin, A., and von Zastrow, M. (2009). Endocytosis and signalling: intertwining molecular networks. Nature reviews Molecular cell biology 10, 609-622.
Spang, A. (2011). Signalling gets sorted by retromer. The EMBO journal 30, 2988-2989.
Stierhof, Y.D., Viotti, C., Scheuring, D., Sturm, S., and Robinson, D.G. (2013). Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma 250, 235-240.
Tarricone, C., Xiao, B., Justin, N., Walker, P.A., Rittinger, K., Gamblin, S.J., and Smerdon, S.J. (2001). The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215-219.
Teasdale, R.D., and Collins, B.M. (2012). Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. The Biochemical journal 441, 39-59.
Tojima, Y., Fujimoto, A., Delhase, M., Chen, Y., Hatakeyama, S., Nakayama, K., Kaneko, Y., Nimura, Y., Motoyama, N., Ikeda, K., et al. (2000). NAK is an IkappaB kinase-activating kinase. Nature 404, 778-782.
van Weering, J.R., Sessions, R.B., Traer, C.J., Kloer, D.P., Bhatia, V.K., Stamou, D., Carlsson, S.R., Hurley, J.H., and Cullen, P.J. (2012). Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. The EMBO journal 31, 4466-4480.
van Weering, J.R., Verkade, P., and Cullen, P.J. (2010). SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Seminars in cell & developmental biology 21, 371-380.
van Zuylen, W.J., Doyon, P., Clement, J.F., Khan, K.A., D'Ambrosio, L.M., Do, F., St-Amant-Verret, M., Wissanji, T., Emery, G., Gingras, A.C., et al. (2012). Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS pathogens 8, e1002747.
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351.
Wassmer, T., Attar, N., Harterink, M., van Weering, J.R., Traer, C.J., Oakley, J., Goud, B., Stephens, D.J., Verkade, P., Korswagen, H.C., et al. (2009). The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Developmental cell 17, 110-122.
Worby, C.A., and Dixon, J.E. (2002). Sorting out the cellular functions of sorting nexins. Nature reviews Molecular cell biology 3, 919-931.
Xia, Z.P., Sun, L., Chen, X., Pineda, G., Jiang, X., Adhikari, A., Zeng, W., and Chen, Z.J. (2009). Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114-119.
Yamamoto, M., and Akira, S. (2004). [TIR domain--containing adaptors regulate TLR-mediated signaling pathways]. Nihon rinsho Japanese journal of clinical medicine 62, 2197-2203.
Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., et al. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61122-
dc.description.abstract先天免疫是宿主抵抗病原菌感染的第一道防線。TBK1為TLRs訊號傳遞下游調節干擾素產生的關鍵蛋白。在我們實驗室之前的研究中,利用酵母菌雙雜合系統篩選和TBK1有結合能力的蛋白,其中一個具結合能力的蛋白屬於分選連接蛋白家族。分選連接蛋白為細胞中囊泡運輸過程負責這種細胞膜形變的作用蛋白之一,然而,此類蛋白在TLR4的訊號傳遞上面所扮演的調控角色目前並不清楚,因此我們的研究主要想知道這個分選連接蛋白是怎麼去調節TLR4的訊號傳遞。首先,我們在293T細胞中利用免疫沉澱的實驗中確定了TBK1和此分選連接蛋白確實具有結合的能力,另外也可以在RAW 264.7細胞中利用螢光標定的方式看到兩者可以同時存在同一個區域。接著,我們在降低此分選連接蛋白的情況底下,觀察到在TLR4刺激後所調控的基因包括Ifn4a、Ifnb、Ccl5及Il6都減少了他們被轉譯的能力。另外,我們觀察到TLR4訊號傳遞最終兩個關鍵的轉路調控因子IRF3及p65入核的情況在此分選連接蛋白表現降低的情況下也受到了抑制。最後,我們檢測了幾個訊號傳遞過程中不同蛋白在此分選連接蛋白表現降低之後的活性,沒有太大的影響及變化。綜合以上的結果,我們認為此分選連接蛋白確實會調控TLR4的訊號傳遞過程,但詳細的分子機制我們還需要更多的努力來幫助我們解開這個問題。zh_TW
dc.description.abstractInnate immunity is the first line of host defense against pathogen infection. TBK1 is a key player involved in TLRs-activated type I interferon production. Previous study in our lab used yeast two-hybrid screening and obtained a TBK1-interacted protein, a sorting nexin family protein. This protein family is a machinery protein involved in vesicle trafficking. However, the function of this sorting nexin protein in the regulation of TLR4 signaling is still unknown so we here aim to study the functional role of it in the regulation of TLR4 signaling. We first confirmed the association of the sorting nexin protein and TBK1 by co-immunoprecipitation assay in 293T cells. In addition, TBK1 colocalized with it in RAW 264.7 macrophages by immunofluorescent assay. Second, the expression of Ifn4a, Ifnb, Ccl5 and Il6 mRNA was downregulationed in the sorting nexin-depleted RAW 264.7 cells upon LPS stimulation. Third, the nuclear translocation of core transcription factors in TLR4 signaling, IRF3, was decreased in the sorting nexin-depleted cells after LPS stimulation. Furthermore, LPS-induced activation of MAPKs in the sorting nexin knockdown macrophages was not change. Taken together, our data suggest that this sorting nexin regulates TLR4-mediated immune response although the detailed mechanism still awaits further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:47:47Z (GMT). No. of bitstreams: 1
ntu-102-R00448007-1.pdf: 4628943 bytes, checksum: 14e06a2409f24bbaddbd127b1239a580 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 3
Abstract 4
Introduction 10
PAMPs, PRRs and TLRs 11
TBK1: self-activation and substrate selection 17
TLR-signaling regulation and Subcellular localization 19
Sorting nexin 1, Retromer complex and Vesicle trafficking 21
Specific aim 26
Materials and Methods 27
Antibodies and Reagents 27
Plasmids 28
Cell lines, Cell culture and Transfection 28
Lentivirus based knockdown system 29
Total cell lysate preparation 30
Immunoprecipitation 30
Subcellular fractionation 31
Immunofluorescence 32
Total RNA extraction 33
Reverse Transcription Real time quantitative PCR (RT-QPCR) 34
Statistic 34
Results 35
SNX1 associated with TBK1 and LPS induced the puncta formation of TBK1 35
Depletion of SNX1 downregulated the expression of type I interferon (IFN) and interferon responsive genes upon TLR4 activation. 36
TLR4 signaling cascade had no obvious changed whereas the nuclear translocation of IRF3 was decreased in SNX1depeleted RAW 264.7 cells after LPS stimulation. 38
TBK1 resided on late endosome/lysosome but not early endosome 39
Discussions 41
Physical interaction and colocalization between SNX1 and TBK1 41
Possible function of late endosome/lysosome-anchored TBK1 42
The expression of IL-6, a NF-κB-dependent gene, was decreased in LPS-induced SNX1 knockdown cells 45
Figures 47
Figure 1. TBK1 associated with SNX1 when overexpressedin 293T cells. 47
Figure 2. LPS induced TBK1 and SNX1 colocalization in RAW 264.7 macrophages. 49
Figure 3. The RNA expression of SNX2 was not altered in SNX1-deficienct RAW 264.7 cells 50
Figure 4. The mRNA expression of type I interferon (IRN), IFN-responsive genes, and IL-6 was decreased in SNX1 knockdown RAW 264.7 cells in response to LPS. 52
Figure 5. TLR4 signaling cascade was not obviously affected in SNX1 knockdown cells after LPS stimulation. 53
Figure 6. Nuclear translocation of IRF3 was decreased in SNX1 knockdown cells after LPS stimulation. 54
Figure 7. TBK1 was localized to late endosome/lysosome but not early endosome in RAW 264.7 cells. 55
Figure 8. TBK1 did not colocalized with SNX1 in LAMP1+ compartments in RAW 264.7 cells after LPS stimulation. 56
Figure 9. LPS increased TBK1 translocation into heavy membrane in RAW 264.7 cells. 57
Figure 10. The proposed model for the regulation of TLR4-induced immune response through SNX1 58
Supplementary figures 59
Supplementary Figure 1. TLR4 signaling pathway 59
Supplementary Figure 2. Schematic diagram of SNX1 and the mechanism of SNX1-mediated vesicle sorting. 61
Supplementary Figure 3. SNX1 was a candidate TBK1-interacting protein obtained from the yeast-two hybrid screening. 62
Supplementary Figure 4. The specificity of TBK1 antibodies used in immunoflourescent assay 63
Table1. Plasmid list 64
Table2. Primer list 65
Reference 67
dc.language.isoen
dc.subject分選連接蛋白zh_TW
dc.subject先天免疫zh_TW
dc.subjectinnate immunityen
dc.subjectsorting nexinen
dc.title一個分選連接蛋白於TLR4調控的免疫反應上扮演的角色zh_TW
dc.titleThe functional role of a sorting nexin family protein in
TLR4-mediated immune response
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee繆希椿,李秀香
dc.subject.keyword先天免疫,分選連接蛋白,zh_TW
dc.subject.keywordinnate immunity,sorting nexin,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved