請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
| dc.contributor.author | Shao-Chien Chang | en |
| dc.contributor.author | 章少謙 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:46:49Z | - |
| dc.date.available | 2015-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | [1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, 'Global cancer statistics,' CA Cancer J Clin, vol. 61, pp. 69-90, Mar-Apr 2011.
[2] S. M. Tan, A. J. Evans, T. P. Lam, and K. L. Cheung, 'How relevant is breast cancer screening in the Asia/Pacific region?,' Breast, vol. 16, pp. 113-9, Apr 2007. [3] E. B. Mendelson, J.-F. Chen, and P. Karstaedt, 'Assessing tissue stiffness may boost breast imaging specificity,' Diagnostic Imaging, vol. 31, pp. 15-17, 2009. [4] D. M. Regner, G. K. Hesley, N. J. Hangiandreou, M. J. Morton, M. R. Nordland, D. D. Meixner, T. J. Hall, M. A. Farrell, J. N. Mandrekar, W. S. Harmsen, and J. W. Charboneau, 'Breast lesions: evaluation with US strain imaging--clinical experience of multiple observers,' Radiology, vol. 238, pp. 425-37, Feb 2006. [5] M. A. Dresner, G. H. Rose, P. J. Rossman, R. Muthupillai, A. Manduca, and R. L. Ehman, 'Magnetic resonance elastography of skeletal muscle,' J Magn Reson Imaging, vol. 13, pp. 269-76, Feb 2001. [6] Y. M. Sohn, M. J. Kim, E. K. Kim, J. Y. Kwak, H. J. Moon, and S. J. Kim, 'Sonographic elastography combined with conventional sonography: how much is it helpful for diagnostic performance?,' J Ultrasound Med, vol. 28, pp. 413-20, Apr 2009. [7] H. Zhi, B. Ou, B. M. Luo, X. Feng, Y. L. Wen, and H. Y. Yang, 'Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions,' J Ultrasound Med, vol. 26, pp. 807-15, Jun 2007. [8] R. Muthupillai and R. L. Ehman, 'Magnetic resonance elastography,' Nat Med, vol. 2, pp. 601-3, May 1996. [9] N. Rustemovic, I. Hrstic, M. Opacic, R. Ostojic, J. Jakic-Razumovic, M. Kvarantan, R. Pulanic, and B. Vucelic, 'EUS elastography in the diagnosis of focal liver lesions,' Gastrointest Endosc, vol. 66, pp. 823-4; discussion 824, Oct 2007. [10] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, 'Breast disease: clinical application of US elastography for diagnosis,' Radiology, vol. 239, pp. 341-50, May 2006. [11] W. K. Moon, C. S. Huang, W. C. Shen, E. Takada, R. F. Chang, J. Joe, M. Nakajima, and M. Kobayashi, 'Analysis of Elastographic and B-mode Features at Sonoelastography for Breast Tumor Classification,' Ultrasound in Medicine and Biology, vol. 35, pp. 1794-1802, 2009. [12] K. Z. Mao, 'Orthogonal forward selection and backward elimination algorithms for feature subset selection,' IEEE Trans Syst Man Cybern B Cybern, vol. 34, pp. 629-34, Feb 2004. [13] B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, 'Elastography of breast lesions: Initial clinical results,' Radiology, vol. 202, pp. 79-86, Jan 1997. [14] T. J. Hall, Y. Zhu, and C. S. Spalding, 'In vivo real-time freehand palpation imaging,' Ultrasound Med Biol, vol. 29, pp. 427-35, Mar 2003. [15] R. G. Barr, S. Destounis, L. B. Lackey, 2nd, W. E. Svensson, C. Balleyguier, and C. Smith, 'Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial,' J Ultrasound Med, vol. 31, pp. 281-7, Feb 2012. [16] S. Raza, A. Odulate, E. M. Ong, S. Chikarmane, and C. W. Harston, 'Using real-time tissue elastography for breast lesion evaluation: our initial experience,' J Ultrasound Med, vol. 29, pp. 551-63, Apr 2010. [17] W. K. Moon, S. C. Chang, C. S. Huang, and R. F. Chang, 'Breast tumor classification using fuzzy clustering for breast elastography,' Ultrasound Med Biol, vol. 37, pp. 700-8, May 2011. [18] N. Cho, W. K. Moon, J. S. Park, J. H. Cha, M. Jang, and M. H. Seong, 'Nonpalpable breast masses: evaluation by US elastography,' Korean J Radiol, vol. 9, pp. 111-8, Mar-Apr 2008. [19] J. M. Chang, W. K. Moon, N. Cho, and S. J. Kim, 'Breast mass evaluation: factors influencing the quality of US elastography,' Radiology, vol. 259, pp. 59-64, Apr 2011. [20] Y. C. Chang, M. C. Yang, C. S. Huang, S. C. Chang, G. Y. Huang, W. K. Moon, and R. F. Chang, 'Automatic selection of representative slice from cine-loops of real-time sonoelastography for classifying solid breast masses,' Ultrasound Med Biol, vol. 37, pp. 709-18, May 2011. [21] A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. U. Blohmer, K. J. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. Kummel, 'Real-time elastography--an advanced method of ultrasound: First results in 108 patients with breast lesions,' Ultrasound Obstet Gynecol, vol. 28, pp. 335-40, Sep 2006. [22] A. Thomas, M. Warm, M. Hoopmann, F. Diekmann, and T. Fischer, 'Tissue Doppler and strain imaging for evaluating tissue elasticity of breast lesions,' Acad Radiol, vol. 14, pp. 522-9, May 2007. [23] Q. L. Zhu, Y. X. Jiang, J. B. Liu, H. Liu, Q. Sun, Q. Dai, and X. Chen, 'Real-Time Ultrasound Elastography: Its Potential Role in Assessment of Breast Lesions,' Ultrasound Med Biol, vol. 34, pp. 1232-8, Mar 20 2008. [24] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, 'Quantitative Assessment of Breast Lesion Viscoelasticity: Initial Clinical Results Using Supersonic Shear Imaging,' Ultrasound in Medicine and Biology, vol. 34, pp. 1373-1386, 2008. [25] G. W. Corder and D. I. Foreman, Nonparametric statistics for non-statisticians : a step-by-step approach. Hoboken, N.J.: Wiley, 2009. [26] R. C. Sprinthall, Basic Statistical Analysis, 9 ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2011. [27] J. A. Sethian, Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd ed. Cambridge, U.K. ; New York: Cambridge University Press, 1999. [28] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms: New York: Plenum, 1981. [29] American College of Radiology, Breast Imaging Reporting and Data System (BI-RADS)_Ultrasound. Reston, Va: American College of Radiology, 2003. [30] E. S. Burnside, T. J. Hall, A. M. Sommer, G. K. Hesley, G. A. Sisney, W. E. Svensson, J. P. Fine, J. Jiang, and N. J. Hangiandreou, 'Differentiating benign from malignant solid breast masses with US strain imaging,' Radiology, vol. 245, pp. 401-10, Nov 2007. [31] F. K. Quek and C. Kirbas, 'Vessel extraction in medical images by wave-propagation and traceback,' IEEE Trans Med Imaging, vol. 20, pp. 117-31, Feb 2001. [32] J. M. Thijssen, B. J. Oosterveld, and R. F. Wagner, 'Gray level transforms and lesion detectability in echographic images,' Ultrason Imaging, vol. 10, pp. 171-95, Jul 1988. [33] J. S. Lee, 'Digital image noise smoothing and the sigma filter,' Computer Vision, Graphics and Image Processing, vol. 24, pp. 255-269, 1983. [34] R. C. Gonzalez, R. E. Woods, and B. R. Masters, Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009. [35] H. J. A. M. Heijmans, 'Theoretical Aspects of Gray-Level Morphology,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 568-582, Jun 1991. [36] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979. [37] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986. [38] P. Soille, Morphological Image Analysis: Principles and Applications, Second ed.: Springer-Verlag Telos, 2003. [39] D. W. Zimmerman, 'A Note on Interpretation of the Paired-Samples t Test,' Journal of Educational and Behavioral Statistics, vol. 22, pp. 349-360, 1997. [40] A. R. Feinstein, Principles of Medical Statistics, 1 ed. Florida, USA: Chapman & Hall/CRC, 2001. [41] N. Cho, W. K. Moon, H. Y. Kim, J. M. Chang, S. H. Park, and C. Y. Lyou, 'Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses,' J Ultrasound Med, vol. 29, pp. 1-7, Jan 2010. [42] R. Bod, J. Hay, and S. Jannedy, Probabilistic linguistics. Cambridge, Mass.: MIT Press, 2003. [43] I. J. Schoenberg, Cardinal spline interpolation. Philadelphia: Society for Industrial and Applied Mathematics, 1973. [44] J. Sklansky, ' Finding the convex hull of a simple polygon,' Pattern Recognition Letters, vol. 1, pp. 79-83, 1982. [45] B. Jahne, E. Barth, R. Mester, H. Scharr, and SpringerLink (Online service). (2006). Complex Motion First International Workshop, IWCM 2004, Gunzburg, Germany, October 12-14, 2004. Revised Papers. Available: http://dx.doi.org/10.1007/978-3-540-69866-1 [46] A. Agresti, Categorical data analysis, 2nd ed. New York: Wiley-Interscience, 2002. [47] J. Hilbe, Logistic regression models. Boca Raton: CRC Press, 2009. [48] S. Geisser, Predictive inference : an introduction. New York: Chapman & Hall, 1993. [49] R. Picard and D. Cook, 'Cross-Validation of Regression Models,' Journal of the American Statistical Association, vol. 79, pp. 575-583, 1984. [50] D. G. Kleinbaum, M. Klein, and SpringerLink (Online service). (2010). Logistic regression a self-learning text (3rd ed.). Available: http://dx.doi.org/10.1007/978-1-4419-1742-3 [51] J. A. Hanley and B. J. McNeil, 'The meaning and use of the area under a receiver operating characteristic curve,' Radiology, vol. 143, pp. 29-36, 1982. [52] C. E. Metz, 'ROC methodology in radiologic imaging,' Invest Radiol, vol. 21, pp. 720-733, 1986. [53] J. A. Swets, 'ROC anaylis applied to the evaluation of medical imaging techniques,' Invest Radiol, vol. 14, pp. 109-121, 1979. [54] E. Lazarus, M. B. Mainiero, B. Schepps, S. L. Koelliker, and L. S. Livingston, 'BI-RADS lexicon for US and mammography: Interobserver variability and positive predictive value,' Radiology, vol. 239, pp. 385-391, May 2006. [55] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007. [56] W. C. Shen, R. F. Chang, W. K. Moon, Y. H. Chou, and C. S. Huang, 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007. [57] A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [58] R. M. Haralick, Shanmuga.K, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [59] M. Robnik-Sikonja and I. Kononenko, 'Theoretical and empirical analysis of ReliefF and RReliefF,' Machine Learning, vol. 53, pp. 23-69, Oct-Nov 2003. [60] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997. [61] J. Brank, M. Grobelnik, N. Milic-Frayling, and D. Mladenic, 'Feature selection using linear support vector machines,' Microsoft Research, Microsoft Corporation, 2002. [62] D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000. [63] A. S., Support Vector Machines for Pattern Classification, second ed. London: Springer, 2010. [64] W. Meng, G. Zhang, C. Wu, G. Wu, Y. Song, and Z. Lu, 'Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions,' Ultrasound Med Biol, vol. 37, pp. 1436-43, Sep 2011. [65] C. C. Bhatia KS, Tong CS, Yuen EH, Ahuja AT., 'Shear Wave Elasticity Imaging of Cervical Lymph Nodes,' Ultrasound in Medicine & Biology, vol. 38, pp. 195-201, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61106 | - |
| dc.description.abstract | 根據統計,乳癌是全球女性因癌症死亡的第二大主因。在所有應用超音波來做乳房癌症篩檢的技術當中,彈性超音波是一種簡單而有效的方式。某些臨床上的研究指出,彈性超音波可藉由測量正常組織與病灶部位之組織的彈性程度差異,進而區分出良性及惡性的乳房腫瘤。然而,不同的放射科醫師對於一些腫瘤特徵如:腫瘤邊界、腫瘤寬度及腫瘤面程等會持有不同意見。因此不同的觀察者對於診斷結果會有不同的看法。基於上述的理由,本篇研究主要的目的就是致力於發展一套應用於彈性超音波,同時不受觀察者影響的電腦輔助診斷系統。目前已利用等階集合法實作自動腫瘤切割的技術,並利用模糊演算法對彈性圖中腫瘤內部的組織分類,進而由醫生所選的影像或是整段彈性超音波當中擷取腫瘤特徵進行診斷。此外,我們也設計一套量化影像的方式,藉由分析彈性超音波中之彈性圖裡的組織彈性資料分佈,去選擇最適合用於診斷之影像,同時研究如何將B-mode及彈性圖當中分別取出的特徵作結合,以利提升診斷之準確率。 | zh_TW |
| dc.description.abstract | According to statistics, breast cancer is the global second-leading cause of cancer death among women. Among all of ultrasonic techniques for breast ultrasound examination, elastography is an easily performed and efficient component of the ultrasound examination for breast. Some clinical studies had reported elastography is used to differentiate benign from malignant breast lesions based on evaluating the difference in tissue strain between normal and diseased tissue. However, diagnostic results are also observer dependent, i.e. different physicians may have different opinions on the lesion characteristics such as boundary, width, and area. Therefore the main purpose of this study is to investigate observer-independent computer-aided diagnostic schemes on ultrasound elastography. Currently we had developed an automatic tumor segmentation technique based on the level set algorithm. Tissues within the lesion on the elastogram were classified using the fuzzy c-means algorithm. Elastographic features were extracted from the physician-selected slice or from the entire sequence to diagnose tumors. In addition, an image quantification method based on analyzing the distribution of tissue strains will be used to automatically choose representative slice for diagnosis. Furthermore, features respectively extracted from B-mode image and elastogram will be combined to improve the diagnostic performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:46:49Z (GMT). No. of bitstreams: 1 ntu-102-D96922001-1.pdf: 3366312 bytes, checksum: 46d8608898ec4ca14096e27b997763c9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Acknowledgements ii
中文摘要 iii Abstract iv Contents vi List of Figures x List of Tables xiv Chapter 1 Introduction 1 1.1 Research Movitation 1 1.2 Issue Description 3 1.2.1 Diagnosing Physician-selected Images Based on the Stiffness Degree 4 1.2.2 Diagnosing Entire Sequences Based on Elastographic Characteristics 5 1.2.3 Diagnosing Hand-held Based on Combining B-mode and Elastographic Features 6 1.3 Organization 6 Chapter 2 A Review of Related Techniques for Diagnosing Breast Tumors on Elastography 8 2.1 Elastography Aquisition 8 2.2 Researches about Diagnosing Breast Tumors on Elastography 11 2.3 Tools and Statistical Analysis 14 Chapter 3 Diagnosing Physician-selected Images Based on the Stiffness Degree 16 3.1 Introduction 16 3.2 Materials 16 3.3 Method 18 3.3.1 Image Preprocessing 18 3.3.2 Tumor Segmentation 22 3.3.3 Fuzzy Clustering 24 3.3.4 Statistical Analysis 26 3.4 Results and Discussion 27 3.5 Summary 31 Chapter 4 Diagnosing Entire Sequences Based on Elastographic Characteristics 33 4.1 Introduction 33 4.2 Materials 34 4.3 Method 35 4.3.1 Lesion Boundary Tracking 37 4.3.1.1 Control Points and Spline Fitting 37 4.3.1.2 Template Matching 41 4.3.2 Tissue Classification Based on the Fuzzy C-means Clustering 42 4.3.3 Tumor Diagnosis Based on the Logistic Regression Model 44 4.4 Results and Discussion 47 4.4.1 Performance of the Proposed Scheme 47 4.4.2 Performance Improvement and Comparisons 50 4.5 Summary 57 Chapter 5 Diagnosing Hand-held Elastography Based on Combining B-mode and Elastographic Features 59 5.1 Introduction 59 5.2 Materials 60 5.3 Method 61 5.3.1 Automatic selection of the representative slice 62 5.3.2 Feature Extration 63 5.3.2.1 Shape 63 5.3.2.2 Orientation 64 5.3.2.3 Margin 65 5.3.2.4 Lesion boundary 67 5.3.2.5 Echo pattern 68 5.3.2.6 Posterior acoustic feature 69 5.3.2.7 GLCM texture features 70 5.3.3 Results and Discussion 72 5.4 Summary 81 Chapter 6 Conclusions and Future Directions 82 References 84 Publication List 94 | |
| dc.language.iso | en | |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 彈性超音波 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | Breast cancer | en |
| dc.subject | Elastography | en |
| dc.subject | Computer-aided diagnosis | en |
| dc.title | 乳房彈性超音波之電腦輔助診斷 | zh_TW |
| dc.title | Computer-aided Diagnosis for Breast Elastography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃俊升,張允中,陳偉銘,張簡光哲 | |
| dc.subject.keyword | 乳癌,彈性超音波,電腦輔助診斷, | zh_TW |
| dc.subject.keyword | Breast cancer,Elastography,Computer-aided diagnosis, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
