Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建成(Jian-Cheng Lee)
dc.contributor.authorQueenie Changen
dc.contributor.author張冕zh_TW
dc.date.accessioned2021-06-16T10:46:42Z-
dc.date.available2015-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citation丁禕(2008)臺灣東部海岸山脈泥岩中黏土礦物所隱示之地質意義。台灣大學地質科學研究所碩士論文。共117頁。
朱曜國(2007)池上斷層的古地震研究。台灣大學地質科學研究所碩士論文。共110頁。
何春蓀(1986)台灣地質概論-台灣地質圖說明書。經濟部中央地質調查所,共164頁。
宋聖榮與羅煥記(1990)台灣東部海岸山脈火山岩及相關岩石層序。經濟部中央地質調查所特刊,第四號,第261-270頁。
李易叡(2007)池上斷層在萬安沖積扇的構造地形研究。台灣大學地質科學研究所碩士論文。共71頁。
林久芳(1989)台灣恆春半島及東部海岸全新世隆起珊瑚之鈾系定年研究。台灣大學地質科學研究所碩士論文。共119頁。
林廷潔、李建成、姜國彰、黃文正與劉啟清(2010)池上斷層震間垂直位移及斷層面位移分部探討:跨越縱谷及海岸山脈之水準測量。中華民國地質學會與中華民國地球物理學會99年年會暨學術研討會摘要(1-1-402A-T1-3)。
林啟文、陳文山、劉彥求與陳柏村(2009)台灣東部與南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊,第二十三號,共178頁。
林朝棨(1957)臺灣地形:臺灣省文獻委員會。共424頁。
姚宗茂(1987)台灣海岸山脈泰源盆地新第三紀地層中黏土礦物之研究。台灣大學地質科學研究所碩士論文。共101頁。
紀權窅(2007)南段花東縱谷之新期構造研究─利吉斷層與鹿野斷層的活動特性。台灣大學地質科學研究所碩士論文。共84頁。
徐鐵良(1954)台灣東部海岸山脈地形與近期上升運動。台灣省地質調查所彙刊,第八號,第9-58頁。
徐鐵良(1956)台灣東部海岸山脈地質。台灣省地質調查所彙刊,第八號,第15-41頁。
張瑞津(1997)台灣沖積扇之分布、形態及地形意義。地質,第十七卷,第1-2期,第53-63頁。
張瑞津、石再添、沈淑敏與張政亮(1992a)花東縱谷南段河階的地形學研究。師大地理研究報告,第十六期,第27-63頁。
張瑞津、石再添、沈淑敏與張政亮(1992b)花東縱谷北段河階的地形學研究。師大地理研究報告,第十八期,第241-292頁。
張瑞津、石再添、楊淑君、林譽方與陳翰霖(1994)花東縱谷沖積扇的地形學研究。師大地理研究報告,第二十一期,第43-74頁。
張麗旭(1962)台灣蘇澳群與烏來二群所產之浮游性有孔蟲及其地層學意義。中國地質學會會刊,第五號,第127-134頁。
張麗旭(1963)台灣中部所為埔里層之基於小型有孔蟲之生物地層學研究。中國地質學會會刊,第六號,第3-17頁。
曹恕中(1996)台灣中央山脈變質沉積岩伊萊石結晶度、鋯石核飛跡年代和鉀氬年代之地質意義。台灣大學地質科學研究所博士論文。共256頁。
許宏生(1985)台東縣海岸山脈黏土礦之組成與性質。台灣大學地質科學研究所碩士論文。共100頁。
陳文山、陳志雄、王源與黃敦友(1990)台灣海岸山脈之地層。經濟部中央地質調查所特刊,第四號,239-260。
陳光祖(1985)海岸山脈利吉層黏土礦物之研究。台灣大學地質科學研究所碩士論文。共89頁。
陳培源(1957)台灣黏土礦藏及黏土礦物。台灣礦業,第九卷(第三、四期),第1-7頁。
陳培源(1973)台灣北部與東部之黏土礦床。台灣礦業,第二十五卷(第三、四期),第127-146頁。
陳培源(1993)台灣黏土礦物學研究之進展與成果。經濟部中央地質調查所特刊,第七號,第101-126頁。
陳肇夏、王京維與鐘三雄(1994)鉀雲母結晶度在台灣雪山及中央山脈地層與構造研究上之應用。經濟部中央地質調查所特刊,第五號,第1-18頁。
曾譯禾與詹瑜璋(2012)新武呂溪沿線河階及其可能抬升速率初步研究。中華民國地質學會與中華民國地球物理學會101年年會暨學術研討會摘要(1-1-S135-T1-3)。
劉勇君、李建成與陳柔妃(2010)逆衝斷層上盤持續新生之河階面群的非線性抬升速率研究:池上斷層沿線全新世河階分析。中華民國地質學會與中華民國地球物理學會99年年會暨學術研討會摘要(1-2-402A-T1-4)。
劉政、黃明偉與蔡義本(2007)2003年12月10日成功地震前後池上斷層錯動及水準測量結果。經濟部中央地質調查所彙刊,第二十號,第23-51頁。
謝孟龍(2007)台灣河階地形研究的回顧、檢討與展望。經濟部中央地質調查所特刊,第十八號,第209-242頁。
謝孟龍與劉平妹(2010)花東海岸全新世地殼上升速率的再檢討。經濟部中央地質調查所彙刊,第二十三號,第165-199頁。
鍾令和(2003)1951年池上-玉里地震地表破裂與其所指示之新構造意義。台灣大學地質科學研究所碩士論文。共138頁。
龔琪嵐與齊士崢(2012)縱谷段層南段的階地對比及新構造運動研究。環境與世界,第二十四至二十五期,第93-114頁。
Angelier, J., H. T. Chu, and J. C. Lee (1997), Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274(1–3), 117-143.
Angelier, J., H. T. Chu, J. C. Lee, and J. C. Hu (2000), Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan, Journal of Geodynamics, 29(3–5), 151-185.
Barrier, E., and C. Muller (1984), New observations and discussion on the origin and age of the Lichi Melange, Mem. Geol. Soc. China, 6, 303-326.
Biq, C. (1971), Comparison of melange tectonics in Taiwan and in some other mountain belts, Petrol. Geol. Taiwan, 9, 79-106.
Biscaye, P. E. (1965), Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans, Geological Society of America Bulletin, 76(7), 803-832.
Blair, T. C., and J. G. McPherson (1994a), Alluvial Fan Processes and Forms, in Geomorphology of Desert Environments, edited by A. Abrahams and A. Parsons, Springer Netherlands, 354-402.
Blair, T. C., and J. G. McPherson (1994b), Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages, Journal of Sedimentary Research, 64(3a), 450-489.
Blair, T. C. (1999), Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California, Sedimentology, 46(6), 1015-1028.
Blum, M. D., and T. E. Tornqvist (2000), Fluvial responses to climate and sea-level change: a review and look forward, Sedimentology, 47, 2-48.
Braucher, R., D. L. Bourles, F. Colin, E. T. Brown, and B. Boulange (1998), Brazilian laterite dynamics using in situ-produced 10Be, Earth and Planetary Science Letters, 163(1–4), 197-205.
Braucher, R., E. T. Brown, D. L. Bourles, and F. Colin (2003), In situ produced 10Be measurements at great depths: implications for production rates by fast muons, Earth and Planetary Science Letters, 211(3–4), 251-258.
Braucher, R., P. Del Castillo, L. L. Siame, A. J. Hidy, and D. L. Bourles (2009), Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases, Quaternary Geochronology, 4(1), 56-67.
Brown, E. T., J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, and E. J. Brook (1991), Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al, Geochimica et Cosmochimica Acta, 55(8), 2269-2283.
Bryant, M., P. Falk, and C. Paola (1995), Experimental study of avulsion frequency and rate of deposition, Geology, 23(4), 365-368.
Bull, W. B., and P. L. K. Knuepfer (1987), Adjustments by the Charwell River, New Zealand, to uplift and climatic changes, Geomorphology, 1(1), 15-32.
Bull, W. B. (1990), Stream-terrace genesis: implications for soil development, Geomorphology, 3(3–4), 351-367.
Bull, W. B. (1991), Geomorphic responses to climatic change, New York, NY (United States); Oxford University Press, 326 pp.
Cazanacli, D., C. Paola, and G. Parker (2002), Experimental Steep, Braided Flow: Application to Flooding Risk on Fans, Journal of Hydraulic Engineering, 128(3), 322-330.
Chang, C. P., J. Angelier, and C. Y. Huang (2000), Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan, Tectonophysics, 325(1–2), 43-62.
Chang, C. P., J. Angelier, C. Y. Huang, and C. S. Liu (2001), Structural evolution and significance of a melange in a collision belt: the Lichi Melange and the Taiwan arc–continent collision, Geological Magazine, 138(6), 633-651.
Chang, L. S. (1967), A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (I, southern part), Proc. Geol. Soc. China, 10, 64-76.
Chang, L. S. (1968), A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (II, Northern Part), Proc. Geol. Soc. China, 11, 19-33.
Chang, L. S. (1969), A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (III, Middle Part), Proc. Geol. Soc. China, 12, 89-101.
Chen, W. S., M. T. Huang, and T. K. Liu (1991), Neotectonic significance of the Chimei fault in the Coastal Range, eastern Taiwan, Proc. Geol. Soc. China, 34, 43-56.
Chen, W. S. (1997), Mesoscopic structures developed in the Lichi melange during arc-continent collision in Taiwan region, Journal of the Geolofical Society of China, 40(2), 415-434.
Chen, W. S. (2009), The fault slip long term velocity and recurrence period., Report of Central Geological Survey, 31-40.
Chen, R. F., F. Derrieux, K. J. Chang, L. L. Siame, J. C. Lee, R. Braucher, D. C. Lee, D. Boulres, and Y. G. Chan (2010), Application of insitu proced 10Be measurement at alluvial terraces in Taiwan., 2010 AGU Fall meeting Abstract T51A-050.
Cheng, S. N., Y. T. Yeh, and M. S. Yu (1996), The 1951 Taitung earthquake in Taiwan, Journal of the Geolofical Society of China, 39, 267-286.
Chi, W. R., J. Namson, and W. Mei (1980), Calcareous nannoplankton biostratigraphy of the Neogene sediments exposed along the Hsiukuluanchi in the Coastal Range, eastern Taiwan, Pert. Geol. Taiwan, 17, 75-87.
Chi, W. R., J. Namson, and J. Suppe (1981), Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan, Mem. Geol. Soc. China, 4, 155-194.
Ching, K. E., M. L. Hsieh, K. M. Johnson, K. H. Chen, R. J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, Journal of Geophysical Research, 116(B8).
Chmeleff, J., F. von Blanckenburg, K. Kossert, and D. Jakob (2010), Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 192-199.
Clarke, L., T. A. Quine, and A. Nicholas (2010), An experimental investigation of autogenic behaviour during alluvial fan evolution, Geomorphology, 115(3-4), 278-285.
Davis, R., and O. A. Schaeffer (1955), Chlorine-36 in nature, Annals of the New York Academy of Sciences, 62(5), 107-121.
Dunai, T. (2010), Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciences, Cambridge University Press Cambridge, 200 pp.
Field, J. (2001), Channel avulsion on alluvial fans in southern Arizona, Geomorphology, 37(1), 93-104.
Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems, Annals of eugenics, 7(2), 179-188.
Frey, M. (1987), Very low-grade metamorphism of clastic sedimentary rocks, Low temperature metamorphism, 9-58.
Gosse, J. C., and F. M. Phillips (2001), Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Science Reviews, 20(14), 1475-1560.
Gray, T. B. (2007), The Holocene uplift of the Chihshang segment of the Longitudinal Valley Fault at Fuli, eastern Taiwan, Central Washington University Master Thesis, 57 pp.
Griffin, J. J., H. Windom, and E. D. Goldberg (1968), The distribution of clay minerals in the World Ocean, Deep Sea Research and Oceanographic Abstracts, 15(4), 433-459.
Heisinger, B., D. Lal, A. Jull, P. Kubik, S. Ivy-Ochs, S. Neumaier, K. Knie, V. Lazarev, and E. Nolte (2002a), Production of selected cosmogenic radionuclides by muons: 1. Fast muons, Earth and Planetary Science Letters, 200(3), 345-355.
Heisinger, B., D. Lal, A. Jull, P. Kubik, S. Ivy-Ochs, K. Knie, and E. Nolte (2002b), Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth and Planetary Science Letters, 200(3), 357-369.
Hidy, A. J., J. C. Gosse, J. L. Pederson, J. P. Mattern, and R. C. Finkel (2010), A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona, Geochemistry Geophysics Geosystems, 11.
Ho, C. S. (1969), Geological significance of potassium-argon ages of the Chimei Igneous Complex in eastern Taiwan, Bull. Geol. Surv. Taiwan, 20, 63-74.
Hogg, S. E. (1982), Sheetfloods, sheetwash, sheetflow, or...?, Earth-Science Reviews, 18(1), 59-76.
Hsieh, M. L., P. M. Liew, and M. Y. Hsu (2004), Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Quaternary International, 115–116, 47-70.
Hsu, T. L. (1962), Recent faulting in the Longitudinal Valley of eastern Taiwan, Memoir of the Geological Society of China, 1, 95-102.
Hsu, Y. C., M. C. Chou, Y. C. Hsu, S. Y. Lin, and S. C. Lu (1973), National Taiwan University radiocarbon measurements II, Radiocardbon, 15, 345-349.
Hsu, Y. J., J. P. Avouac, S. B. Yu, C. H. Chang, Y. M. Wu, and J. Woessner (2009), Spatio-temporal slip, and stress level on the faults within the western foothills of Taiwan: Implications for fault frictional properties, Pure and Applied Geophysics, 166(10-11), 1853-1884.
Hu, J. C., L. W. Chen, H. Y. Chen, Y. M. Wu, J. C. Lee, Y. G. Chen, K. C. Lin, R. J. Rau, H. Kuochen, H. H. Chen, S. B. Yu, J. Angelier (2007), Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan, Geophysical Journal International, 169(2), 667-674.
Huang, C. Y., P. B. Yuan, C. W. Lin, T. K. Wang, and C. P. Chang (2000), Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica, Tectonophysics, 325(1–2), 1-21.
Ivy-Ochs, S., M. Duhnforth, A. L. Densmore, and V. Alfimov (2013), Dating fan deposits with cosmogenic nuclides, in Dating Torrential Processes on Fans and Cones, edited, pp. 243-263, Springer.
Jahn, B., X. Zhou, and J. Li (1990), Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints, Tectonophysics, 183(1), 145-160.
Jahn, B., F. Martineau, J. Peucat, and J. Cornichet (1986), Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance, Tectonophysics, 125(1), 103-124.
Johnson, D. W. (1944), Problems of terrace correlation, Geological Society of America Bulletin, 55(7), 793-818.
Kisch, H. J. (1990), Calibration of the anchizone: a critical comparison of illite ‘crystallinity’scales used for definition, Journal of Metamorphic Geology, 8(1), 31-46.
Klein, C., and B. Dutrow (2008), The Manual of Mineral Science, 23rd edition ed., Wiley, 675 pp.
Korschinek, G., A. Bergmaier, T. Faestermann, U. Gerstmann, K. Knie, G. Rugel, A. Wallner, I. Dillmann, G. Dollinger, and C. L. Von Gostomski (2010), A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 187-191.
Kubler, B. (1964), Les argiles, indicateurs de metamorphisme, Revue de l’Institut Francais du Petrole, 19, 1093-1112.
Lal, D. (1991), Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth and Planetary Science Letters, 104(2), 424-439.
Lave, J., and J. P. Avouac (2000), Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal, Journal of Geophysical Research, 105(B3), 5735.
Lave, J., and J. P. Avouac (2001), Fluvial incision and tectonic uplift across the Himalayas of central Nepal, Journal of Geophysical Research, 106(B11), 26561.
Le Dortz, K., B. Meyer, M. Sebrier, H. Nazari, R. Braucher, M. Fattahi, L. Benedetti, M. Foroutan, L. Siame, D. Bourles, M. Talebian, M. D. Bateman, and M. Ghoraishi (2009), Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran, Geophysical Journal International, 179(2), 700-710.
Le Dortz, K., B. Meyer, M. Sebrier, R. Braucher, H. Nazari, L. Benedetti, M. Fattahi, D. Bourles, M. Foroutan, L. Siame, A. Rashidi, and M. D. Bateman (2011), Dating inset terraces and offset fans along the Dehshir Fault (Iran) combining cosmogenic and OSL methods, Geophysical Journal International, 185(3), 1147-1174.
Lee, J. C., and J. Angelier (1993), Localisation des deformations actives et traitement des donnees geodesiques: l'exemple de la faille de la Vallee Longitudinale, Taiwan, Bulletin de la Societe geologique de France, 164(4), 533-540.
Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, and F. S. Jeng (2001), Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan, Tectonophysics, 333(1), 219-240.
Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, F. S. Jeng, and R. J. Rau (2003), Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001, Journal of Geophysical Research, 108(B11), 2528.
Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, and F. S. Jeng (2005), Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan, Comptes Rendus Geoscience, 337(13), 1200-1207.
Lee, J. C., H. T. Chu, J. Angelier, J. C. Hu, H. Y. Chen, and S. B. Yu (2006), Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw= 6.5, Chengkung earthquake in eastern Taiwan, Journal of geophysical research, 111(B2), B02405.
Liew, P. M., P. A. Pirazzoli, M. L. Hsieh, M. Arnold, J. P. Barusseau, M. Fontugne, and P. Giresse (1993), Holocene tectonic uplift deduced from elevated shorelines, eastern Coastal Range of Taiwan, Tectonophysics, 222(1), 55-68.
Lin, S. B., and G. T. Chen (1986), Clay minerals from the Lichi Melange and its adjacent formation in the Coastal Range, eastern Taiwan., Acta Geologica Taiwanica, 24, 319-356.
Lin, C. W., C. L. Shieh, B. D. Yuan, Y. C. Shieh, S. H. Liu, and S. Y. Lee (2003), Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan, Engineering Geology, 71(1-2), 49-61.
Liu, Y. C., J. C. Lee, and R. F. Chen (2009), The Holocene strath terraces of the Longitufinal Valley at Chihshang in eastern Taiwan and its implication to the activity of the Chihshang Fault, 2009 AGU Fall meeting Abstract T33B-1893.
Merchel, S., M. Arnold, G. Aumaitre, L. Benedetti, D. L. Bourles, R. Braucher, V. Alfimov, S. P. H. T. Freeman, P. Steier, and A. Wallner (2008), Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(22), 4921-4926.
Miall, A. D. (1977), Lithofacies types and vertical profile models in braided river deposits: a summary, Earth-Science Review, 13, 1-62.
Miall, A. D. (1996), The geology of fluvial deposits, Springer Berlin, 582 pp.
Mu, C. H., J. Angelier, J. C. Lee, H. T. Chu, and J. J. Dong (2011), Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan), Journal of Structural Geology, 33(4), 743-755.
Nicholas, A., and T. Quine (2007), Crossing the divide: Representation of channels and processes in reduced-complexity river models at reach and landscape scales, Geomorphology, 90(3), 318-339.
Page, B. M., and J. Suppe (1981), The Pliocene Lichi melange of Taiwan: its plate tectonic and olistostromal origin, American Journal of Science, 281(3), 193-227.
Repka, J. L., R. S. Anderson, and R. C. Finkel (1997), Cosmogenic nuclides dating of fluvial terraces, Fremont River, Utah, Earth and Planetary Science Letters, 152(1), 59-73.
Ritter, D. F., R. C. Kochel, and J. R. Miller (1995), Process geomorphology, Wm. C. Brown Dubuque, IA, 594 pp.
Rust, B. R. (1972), Structure and process in a braided river, Sedimentology, 18(3‐4), 221-245.
Segonzac, G. D. (1970), The transformation of clay minerals furing disgenesis and low-grade metamorphism: A riview, Sedimentology, 15(3‐4), 281-346.
Seno, T. (1977), The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42(2), 209-226.
Shyu, J. B. H., K. Sieh, Y. G. Chen, and L. H. Chung (2006a), Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, Geological Society of America Bulletin, 118(11-12), 1447-1462.
Shyu, J. B. H., K. Sieh, J. P. Avouac, W. S. Chen, and Y. G. Chen (2006b), Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan, Journal of Geophysical Research, 111(B8).
Shyu, J. B. H., L. H. Chung, Y. G. Chen, J. C. Lee, and K. Sieh (2007), Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications, Journal of Asian Earth Sciences, 31(3), 317-331.
Shyu, J. B. H., K. Sieh, Y. G. Chen, R. Y. Chuang, Y. Wang, and L. H. Chung (2008), Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan, Tectonics, 27(1), TC1019.
Siame, L. L., O. Bellier, R. Braucher, M. Sebrier, M. Cushing, D. Bourles, B. Hamelin, E. Baroux, B. de Voogd, and G. Raisbeck (2004), Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France), Earth and Planetary Science Letters, 220(3), 345-364.
Siame, L. L., R. F. Chen, F. Derrieux, J. C. Lee, K. J. Chang, D. Bourles, R. Braucher, L. Leanni, C. C. Kang, C. P. Chang, H. T. Chu (2012), Pleistocene alluvial deposits dating along frontal thrust of Changhua Fault in western Taiwan: The cosmic ray exposure point of view, Journal of Asian Earth Sciences, 51(0), 1-20.
Steinfatt, E. (1988), The Holocene history of the valley between Hualien and Taitung, eastern Taiwan, Bundesanstalt fur Geowissenschaften und Rohstoffe und die Geologische Landesamter in der Bundesrepublik Deutschland.
Stone, J. O. (2000), Air pressure and cosmogenic isotope production, Journal of Geophysical Research, 105(B10), 23753-23759.
Teng, L. S. (1979), Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan (I. Northern part), Acta Geologica Taiwanica, 20, 129-155.
Teng, L. S. (1987), Tectonostratigraphic facies and geologic evolution of the Coastal Range, eastern Taiwan, Mem. Geol. Soc. China, 8, 229-250.
Teng, L. S., and Y. Wang (1981), Island arc system of the Coastal Range, eastern Taiwan, Proc. Geol. Soc. China, 24, 99-112.
Teng, L. S., and H. J. Lo (1985), Sedimentary sequences in the island arc settings of the Coastal Range, eastern Taiwan, Acta Geologica Taiwanica(23), 77-98.
Teng, L. S., W. S. Chen, Y. Wang, S. R. Song, and H. J. Lo (1988), Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan, Acta Geologica Taiwanica, 26, 19-36.
Thornbury, W. D. (1978), Principles of Geomorphology, J. Wiley & Sons, 560 pp.
Tjallingii, R., U. Rohl, M. Kolling, and T. Bickert (2007), Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments, Geochemistry, Geophysics, Geosystems, 8(2).
Tsao, S. J., T. C. Li, J. L. Tien, C. S. Chen, T. K. Liu, and C. H. Chen (1992), Illite crystallinity and fission-track ages along the east central cross-island highway of Taiwan, Acta Geologica Taiwanica(30), 45-64.
Wells, S. G., and A. M. Harvey (1987), Sedimentologic and geomorphic variations in storm-generated alluvial fans, Howgill Fells, northwest England, Geological Society of America Bulletin, 98(2), 182.
Wu, Y. M., Y. G. Chen, T. C. Shin, H. Kuochen, C. S. Hou, J. C. Hu, C. H. Chang, C. F. Wu, and T. L. Teng (2006), Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003Mw6.8 Chengkung earthquake in eastern Taiwan, Geophysical Research Letters, 33(2).
Yamaguchi, M., and Y. Ota (2004), Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan, Quaternary International, 115, 71-81.
Yang, T. Y., T. K. Liu, and C. H. Chen (1988), Thermal event records of the Chimei igneous complex: constraint on the ages of magma activities and the structural implication based on fission track dating, Acta Geologica Taiwanica, 26, 237-246.
Yao, T. M., P. L. Tien, and C. M. Wang-Lee (1988), Clay mineralogical studies on the Nwogene formations, Taiyuan Basin, southern Coastal Range of Taiwan, Acta Geologica Taiwanica, 26, 263-277.
Yen, T. P., C. C. Sheng, and W. P. Keng (1951), The discovery of fusuline limestone in the metamorphic complex of Taiwan, Bull. Geol. Surv. Taiwan, 3, 23-25.
Yen, T. P. (1953), On the occurrence of the late Paleozoic fossils in the metamorphic complex of Taiwan, Bull. Geol. Surv. Taiwan, 4, 23-26.
Yen, T. P. (1968), Volcanic geology of the Coastal Range, eastern Taiwan, Proc. Geol. Soc. China, 11, 74-88.
Yu, S. B., and C. C. Liu (1989), Fault creep on the central segment of the longitudinal valley fault, Eastern Taiwan, Proceedings of the Geological Society of China, 32(3), 209-231.
Yu, S. B., and L. C. Kuo (2001), Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333(1), 199-217.
Yu, S. B., H. Y. Chen, and L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1), 41-59.
Yu, S. B., D. D. Jackson, G. K. Yu, and C. C. Liu (1990), Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan, Tectonophysics, 183(1), 97-109.
Zarn, B., and T. Davies (1994), The significance of processes on alluvial fans to hazard assessment, Zeitschrift fur Geomorphologie, 38(4), 487-500.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61104-
dc.description.abstract花東縱谷中南段池上地區的階地位在池上沖積扇與池上斷層交會處。來自中央山脈的新武呂溪攜帶大量沉積物在池上地區形成了廣大的沖積扇,並在扇端處受到池上斷層逆衝截過,在斷層上盤可以觀察到一系列不同高度的階地。這與一般常見地形中,河流被抬升並下切後,將舊河道和氾濫平原廢棄遺留在高處所形成的河階不盡相同,而是有著更複雜的沉積與構造活動的交互作用。本研究透過分析階地的地形、組成和年代,欲了解池上地區階地的形成機制,釐清新武呂溪的河流沉積與池上斷層的構造活動是如何共同作用並影響階地地形的形成,同時探討階地地形的演育、沖積扇與河道的變遷、斷層長期滑移速率及其變化等。
在地形分析方面,本研究利用高解析度的5m-DEM進行室內階地判識與對比,並於野外進行確認;初步階地對比是利用階面與現生沖積扇面的比高進行,可分為T1 (17-20公尺) 到T10 (90公尺) 等十階。在階地組成方面,本研究進行詳細的野外調查,並在T1、T2、T4、T5、T7、T10等階地面進行七個槽溝的開挖與分析,重建階地沉積物組成剖面,包含其沉積環境及沉積物來源。本研究亦針對階地中的細粒沉積物進行沉積物物源判別,包括利用X光繞射法分析黏土礦物半定量組成、伊萊石結晶度,以及Itrax-XRF岩芯掃描儀所得之化學元素半定量組成及典型判別分析法(Canonical Discriminant Analysis)等;根據這些項目的分析結果將階地細粒沉積物樣本與中央山脈和海岸山脈的樣本交叉比對,以判斷沉積物的來源。階地組成綜合分析的結果顯示,階地底岩(利吉層)上覆的沉積物可大致可歸為兩類:主要礫石堆積(Primary gravel deposits)與二次堆積(Secondary deposits)。主要礫石堆積為變質岩質的礫石夾透鏡狀砂層,為源自中央山脈的辮狀河河道沉積物。二次堆積覆蓋在主要礫石堆積之上,組成多為礫石與泥質細粒沉積物。礫石岩性均為源於海岸山脈的砂岩,沉積環境包含河道沉積和土石流堆積。泥細粒沉積物之物源判別的結果顯示主要物源以海岸山脈利吉層之成分為主,但少部分階地(富南T5及大坡T4)有間歇性來自中央山脈的訊號,本研究解釋為這些二次堆積形成時階地仍在新武呂溪的影響範圍內。在年代分析方面,碳十四定年結果顯示富南T7階地之二次堆積的年代為5,750-6,880 Cal BP。以二次堆積年代來估計主要礫石堆積的最小年代,本研究推論研究地區之階地均為全新世以來的階地,最老的階地及其主要礫石堆積可能形成於大約七千多年前。本研究亦嘗試在大坡T2階地使用宇宙源核種定年法(Cosmogenic nuclides dating),以期補足本研究區域主要礫石堆積難以取得碳十四定年樣本的限制。根據同一剖面不同深度的宇宙源10Be分布,利用卡方逆推模型(χ2 inversion model)擬合衰減曲線可得到理論計算之階地曝曬年代,但由於年輕階地的宇宙源10Be含量極少(< 1600 atoms/g),測量誤差大,且露頭狀況不佳缺少近地表的含量控制,因此年代解釋上仍需小心。
本研究認為在池上斷層上盤由新武呂溪沖積而成的階地其形成與演育的影響因素包括有:斷層持續滑移造成上盤持續相對抬升,以及新武呂溪間歇性對海岸山脈前緣的側蝕並在斷層上盤區域大規模堆積,此兩因素共同作用形成斷層上盤一系列的階地。這些階地的分布同時也記錄了池上沖積扇的發育及新武呂溪的河道變遷歷史:根據主要礫石堆積的分布,本研究認為全新世以來新武呂溪主要影響範圍為沖積扇的北半部,極有可能河道在全新世早期流向為往北,近數百年內才轉往南流。
根據二次堆積的年代、斷層上盤相對抬升的距離以及下盤的沉積速率,本研究推估斷層約七千年來最大平均垂直滑移速率為1.4-1.7 cm/yr。與現今大地測量的結果(2.5-3.0 cm/yr)相比要來得慢許多,暗示著池上斷層在全新世以來的活動速率可能曾經有所改變。
zh_TW
dc.description.abstractLocated in the middle-south Longitudinal Valley in eastern Taiwan, the toe of the Chihshang alluvial fan (mainly formed by Xinwulyu River) is cut and uplifted by the thrusting of the Chihshang Fault, which allowed several levels of terraces to form on the hanging wall of the fault. These sedimentation/tectonics context and geomorphic architecture are different from those for river terraces developed on the sides of river channels, where the terraces formation is mainly due to regional uplift (and/or base level drop) and river incision. In this study, through analyzing the morphology, composition and ages of different levels of terraces, we aim at better understanding the mechanism of terraces formation in the Chihshang area. According to our results, we discuss the interactions between Xinwulyu River sedimentation and tectonics of the Chihshang Fault, as well as the implications on the geomorphic evolution, the channel migration of the Xinwulyu River in the valley, the long-term slip rate of the Chihshang Fault and possible change during the past few thousand years.
Based on geomorphic analysis from the high resolution 5m-DEM, terraces are distinguished into ten levels according to height difference relative to the present alluvial fan surface, from level T1 (17-19 m) to T10 (90 m). We also carried out field investigation and seven trenches analyses on six terraces surface (i.e., T1, T2, T4, T5, T7 and T10) for the purpose of understanding the sedimentation environments and source of sediments. Especially for the fine grain sediments we conducted source identification by several analyses, including XRD semi-quantitative analysis of clay minerals and measurement of Illite crystallinity, XRF semi-quantitative analysis of chemical elements by using Itrax core scanner and Canonical discriminant analysis of chemical element composition. Through comparing with sample from Central Range and Coastal Range we can identify the source of those fine grain materials. From the results of composition analyses above we found that the terrace sediments overlie the bedrock (Lichi Formation) can be divided into two parts: primary gravel deposits and uppermost secondary deposits. Primary gravel deposits are composed of metamorphic rock gravels and lenticular coarse sands layer derived from the rocks in the Central Range, confirming that the terraces are in principal formed by the Xinwulyu River. Secondary deposits cover above the primary gravel deposits for a few meters. They are composed of either sandstone gravels derived from the Coastal Range or fine-grain silt and clay. Sandstone gravel is interpreted to be fluvial deposits of the Coastal Range tributary rivers or landslide deposits. The results of source identification of fine-grain material show that most of them are composed of materials from Coastal Range (Lichi Formation). However, some terraces (Funan T5 and Tapo T4) show significant amount of the Central Range materials, implying that when secondary deposits were formed, the terraces were still under the influence of Xinwulyu River at a rather low level close to the valley altitude.The 14C dating results indicate the ages of the secondary deposits on Funan T7 terrace are around 5,750-6,880 cal BP. The ages of the secondary deposits provide the minimum ages control of primary gravel deposits. We conclude that all these terraces are Holocene terrace, and the terrace gravel of the oldest terraces might deposit around seven thousand years ago. We also try using cosmogenic nuclides dating method to estimate the age of primary gravel deposits, in which samples for 14C dating usually are difficult to fine in the study area. Exposure age of Tapo T2 profile can be conducted by the χ2 inversion modeling results, but since the 10Be concentrations of young terrace such as T2 are very small (lower than 1600 atoms/g) and the error of measurement is large, also lacking of surface control samples, this age and associated interpretation need to be cautious.
We conclude that the terraces in the Chihshang area were formed under influences of continuous Chihshang Fault thrusting movement, episodic lateral erosion and sedimentation of Xinwulyu River, and local deposits from Coastal Range’s tributaries on the hanging wall of fault. The episodic lateral erosion and sedimentation are seemingly accompanied by the river channel migration on alluvial fan. From the uneven distribution of primary gravel deposits we argue that Xinwulyu River might flow to the north in the valley during most of the Holocene, and turn to flow southward in recent hundreds of years.
To estimate the long-term slip rate of Chihshang Fault, we use the ages of secondary deposits of the terraces, and the available data of the sedimentation rate on footwall to calculate the maximum vertical slip rate. The result shows that the long-term vertical slip rate during the past seven thousand years is around 1.4-1.7 cm/yr, much lower than the present vertical slip rate from leveling measurement (2.5-3.0 cm/yr). These results imply that the slip rate of the Chihshang Fault might have change significantly during Holocene.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:46:42Z (GMT). No. of bitstreams: 1
ntu-102-R00224105-1.pdf: 25795172 bytes, checksum: 4480658b8a815aceab073dce0f19d8c1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書................................................................................................................I
誌謝...................................................................................................................................II
摘要.................................................................................................................................III
Abstract….........................................................................................................................V
目錄..............................................................................................................................VIII
圖目錄.............................................................................................................................XI
表目錄...........................................................................................................................XV
第一章 序論...................................................................................................................1
1.1 研究動機與目的...............................................................................................1
1.2 研究區域...........................................................................................................2
1.3 池上地區階地前人研究...................................................................................4
1.4 研究目標...........................................................................................................6
第二章 區域背景與前人文獻回顧...............................................................................7
2.1 區域地質背景概述...........................................................................................7
2.2 池上斷層之前人研究.....................................................................................10
2.3 花東縱谷之河流地形相關討論.....................................................................15
2.4 新武呂溪河流地形相關討論.........................................................................17
第三章 研究方法.........................................................................................................19
3.1 階地地形分析.................................................................................................19
3.1.1 階地判識與分類......................................................................................19
3.1.2 階地對比..................................................................................................20
3.2 階地組成岩相與沉積環境分析.....................................................................22
3.2.1 礫石沉積之岩相......................................................................................22
3.2.2 砂質沉積之岩相......................................................................................24
3.2.3 泥質沉積之岩相......................................................................................25
3.3 細粒沉積物物源判別分析.............................................................................27
3.3.1 黏土礦物分析..........................................................................................27
3.3.2 化學元素組成分析..................................................................................29
3.3.3 採樣方式..................................................................................................32
3.4 年代分析.........................................................................................................34
3.4.1 碳十四定年法..........................................................................................35
3.4.2 宇宙源核種定年法..................................................................................35
3.4.2.1 原理..............................................................................................35
3.4.2.2 採樣方法......................................................................................39
3.4.2.3 樣本處理......................................................................................40
第四章 結果.................................................................................................................42
4.1 階地對比結果與分布特性.............................................................................42
4.2 野外調查結果.................................................................................................44
4.2.1 主要礫石堆積..........................................................................................44
4.2.2 底岩..........................................................................................................47
4.2.3 岩床..........................................................................................................51
4.3 槽溝結果.........................................................................................................52
4.3.1 槽溝位置..................................................................................................52
4.3.2 槽溝組成..................................................................................................53
4.4 黏土礦物分析.................................................................................................68
4.4.1 黏土礦物組成..........................................................................................69
4.4.2 伊萊石結晶度..........................................................................................71
4.4.3 黏土礦物分析小結..................................................................................71
4.5 化學元素組成分析結果.................................................................................72
4.6 碳十四定年結果.............................................................................................77
4.7 宇宙源核種定年結果.....................................................................................78
第五章 階地綜合歸納分析.........................................................................................82
5.1 富里-富南階群...............................................................................................83
5.2 富南-大坡階群...............................................................................................84
5.3 大坡-錦園階群...............................................................................................87
5.4 錦園-萬安階群...............................................................................................89
5.5 階地綜論小結.................................................................................................91
第六章 討論.................................................................................................................94
6.1 階地形成機制討論.........................................................................................94
6.2 沖積扇沉積作用影響之討論.........................................................................95
6.3 池上地區階地及區域地形演育歸納整理.....................................................99
6.4 池上地區階地、池上沖積扇與新武呂溪河階的關聯之討論.....................103
6.5 利用階地年代估計池上斷層全新世以來之長期活動速率.......................105
第七章 結論...............................................................................................................110
參考文獻.......................................................................................................................113
附錄...............................................................................................................................125
附錄一 黏土礦物分析XRD繞射圖譜..............................................................125
附錄二 Itrax-XRF元素掃描結果......................................................................132
dc.language.isozh-TW
dc.subject新武呂溪zh_TW
dc.subject池上斷層zh_TW
dc.subject全新世河階zh_TW
dc.subject沉積物物源判別zh_TW
dc.subject宇宙源核種定年zh_TW
dc.subject沖積扇zh_TW
dc.subject河道變遷zh_TW
dc.subjectcosmogenic nuclides datingen
dc.subjectXinwulyu Riveren
dc.subjectHolocene terracesen
dc.subjectalluvial fanen
dc.subjectriver migrationen
dc.subjectsediments source identificationen
dc.subjectChihshang Faulten
dc.title池上斷層沿線全新世河階的演育:斷層活動與河川沉積之交互作用zh_TW
dc.titleEvolution of the Holocene Uplifted Terraces along the Chihshang Fault: Interactions between Tectonics Uplift and Fluvial Sedimentationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor陳于高(Yue-Gau Chen)
dc.contributor.oralexamcommittee徐澔德(J. Bruce H. Shyu),林殿順(Andrew Tien-Shun Lin),陳柔妃(Rou-Fei Chen)
dc.subject.keyword池上斷層,新武呂溪,全新世河階,沖積扇,河道變遷,沉積物物源判別,宇宙源核種定年,zh_TW
dc.subject.keywordChihshang Fault,Xinwulyu River,Holocene terraces,alluvial fan,river migration,sediments source identification,cosmogenic nuclides dating,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
25.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved