請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | |
| dc.contributor.author | I-Chin Wu | en |
| dc.contributor.author | 吳宜瑾 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:45:23Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | [1] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 604-607, 2010.
[2] D. DiFrancesco, “Pacemaker mechanisms in cardiac tissue,” Annual Review of Physiology, Vol.55.1, pp. 455-472, 1993. [3] A. Cheng and L. G. Tereshchenko, “Evolutionary innovations in cardiac pacing,”Journal of Electrocardiology, Vol.44, pp. 611-615, 2011. [4] M. D. Zimmerman, N. Chaimanonart and D. J. Young, “In vivo RF powering for advanced biological research,” IEEE Engineering in Medicine and Biology Society (EMBS), pp. 2506-2509, 2006. [5] D. C. Ng, S. Bai, G. Felic and E. Skafidas, “Closed-loop inductive link for wireless powering of a high density electrode array retinal prosthesis,” IEEE Electromagnetic Compatibility Symposium Adelaide (EMCSA), pp. 92-97, 2009. [6] 蔡哲宇, 超音波無線神經電刺激器, 國立臺灣大學生醫電資所碩士論文, 2011. [7] K. Hachisuka, A. Nakata, T. Takeda, Y. Terauchi, K. Shiba, K. Sasaki, H. Hosaka and K. Itao, “Development and performance analysis of an intra-body communication device,” International Conference of Solid-State Sensors, Vol.2, pp. 1722-1725, 2003. [8] M. Mark, T. Bjorninen, Y. D. Chen, S. Venkatraman, L. Ukkonen, L. Sydanheimo, J. M. Carmena and J. M. Rabaey, “Wireless channel characterization for mm-size neural implants,” IEEE Engineering in Medicine and Biology Society (EMBS), pp. 1565-1568, 2010. [9] A. Ahlbom, U. Bergqvist, J. H. Bernhardt, J. Cesarini, L. A. Court, M. Grandolfo, M. Hietanen, A. F. Mckinlay, M. H. Repacholi, D. H. Sliney, J. A. J. Stolwijk, M. L. Swicord, L. D. Szabo, M. Taki, T. S. Tenforde, H. P. Jammet and R. Matthes, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Physics, Vol.74, pp. 494-522, 1998. [10] K. Chin, A. Perlas, V. Chan and R. Brull, “Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions,” Regional anesthesia and pain medicine, Vol.33.6, pp. 532-544, 2008. [11] R. Feld, L. Needleman and B. B. Goldberg, “Use of needle-vibrating device and color Doppler imaging for sonographically guided invasive procedures,” American Journal of Roentgenology, Vol.168, pp. 255-256, 1997. [12] http://www.ultrasponder.org/resources/The-project/Dissemination/Publications/ N5_Detection-of-Deeply-Implanted-Impedance-Switching-Devices-Using- Ultrasound-Doppler---JmMari---Inserm1032.pdf [Accessed: May.10, 2013] [13] K. Bazaka and M. V. Jacob, “Implantable devices: issues and challenges,” Electronics, Vol.2, pp. 1-34. [14] N. F. Declercq, “On the fascinating phenomenon of diffraction by periodic structures,” Acoustic Today, Vol.9, Issue 1, pp. 8-13, 2013. [15] N. F. Declercq, J. Degrieck and O. Leroy, “On the theoretical possibility to apply an acoustic diffraction grating as a complex frequency filter device for electronic signals,” Ultrasonics, Vol.43, pp. 764-768, 2005. [16] J. M. Claeys, O. Leroy, A. Jungman and L. Adler, “Diffraction of ultrasonic waves from periodically rough liquid-solid surface,” Journal of Applied Physics, Vol.54, pp. 5657-5662, 1983. [17] J. Liu and N. F. Declercq, “Ultrasonic geometrical characterization of periodically corrugated surfaces,” Ultrasonics, Vol.53, Issue 4, pp. 853-861, 2013. [18] A. Ghatak, “Multiple Beam Interferometry,” in Optics, 4thed., pp. 16.1-16.12, 2009. [19] N. F. Declercq, J. Degrieck, R. Briers and O. Leroy, “A theoretical study of special acoustic effects caused by the staircase of the El Castillo pyramid at the Maya ruins of Chichen-Itza in Mexico,” Journal of the Acoustical Society of America, Vol.116, pp. 3328-3335, 2004. [20] C. Calleja and J. Antonio, “Sound diffraction in periodic surfaces in ancient architectural structures,” Journal of the Acoustical Society of America, Vol.123.5, pp. 3277-3277, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61082 | - |
| dc.description.abstract | 超音波運用於無線神經電刺激器中,植入器是利用超音波進行無線資料與能量傳輸。而該傳輸方式優點如下:第一、由於超音波進行無線傳輸的傳導方式為機械波,不會有射頻電磁波輻射汙染的疑慮,適合在人體內進行訊號傳輸。第二、超音波能輕易進行聚焦,可微小化接收器的尺寸,對人體負擔較小。此外,超音波在人體中穿透深度較射頻電磁波為深,可使植入器的應用更彈性且多元。為了確定無線傳輸時的資料的穩定與能量的效能,所以要確保植入體內的感測器位於聚焦位置。然而,外部超音波發射能量聚焦位置範圍小,良好的超音波定位方式就顯得格外重要。現有技術為利用植入器消耗電能,造成外部超音波偵測出此過程訊號,進而確定其所在位置。由於現有超音波定位技術必須倚賴內部電力的轉換,但位於體內的植入器,所儲備電力有限且珍貴,若在植入器電力耗盡的狀況下,會產生無法對位之狀況,進而無法對植入器充電或進行資料傳輸,造成使用不便。故希望能建立一個內部植入器裝置在沒有任何電力損耗下,就能利用外部超音波系統進行定位。因此我們設計植入裝置的封裝表面物理特性,如厚度與表面形狀結構使外部超音波系統,可以接收到具有特殊性質的回波訊號。以厚度來說,利用超音波對不同介質產生反射與透射進行建設性與破壞性干涉,可造成該特定厚度在特定的發射頻率下有較高的反射率。以表面形狀結構以馬雅金字塔聲音繞射現象為發想,即馬雅金字塔一周期性階梯狀的表面,發射一脈衝,經該特殊結構的表面反射,可得一訊號隨時間頻率下降的現象。運用以上兩種方式,辨認其所造成的特徵,即可偵測出植入裝置的位置,達成不損耗植入裝置電力的情況下,定位植入裝置。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:45:23Z (GMT). No. of bitstreams: 1 ntu-102-R00945010-1.pdf: 2872086 bytes, checksum: 55c3cf04e240ffa058bd2ff17d363ed6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents iv List of Figure vii List of Table x Chpater 1 緒論 1 1.1 植入式醫療器材無線通訊 1 I. 射頻電磁波無線通訊 1 II. 超音波無線通訊 3 III. 超音波與射頻電磁波在人體中的比較 4 1.2 植入式裝置之超音波定位需求 8 1.3 現有超音波定位 8 I. ColorMark活檢針 9 II. 阻抗切換震盪 10 1.4 超音波週期性結構造成的繞射現象 14 1.5 研究目的 15 Chpater 2 厚度干涉對回波訊號的影響 17 2.1 封裝厚度的建設性與破壞性干涉 17 2.2 實驗架構 18 I. 厚度與材料選取 18 II. 實驗架構 19 2.3 實驗結果與討論 19 I. 正規化電壓峰對峰值 19 II. 實驗結果 20 III. 其他路徑干涉討論 21 Chpater 3 階梯狀結構對回波訊號影響 25 3.1 馬雅金字塔聲音繞射現象 25 3.2 階梯狀微結構應用於超音波 28 3.3 設計結構並模擬 30 I. 設計結構應用於植入器封裝表面 30 II. 模擬設計結構所造成的回波訊號 31 3.4 時頻分析 33 3.5 實驗結果 37 I. 實驗架構 37 II. 實驗結果 39 3.6 討論 42 I. 深度對回波訊號頻率隨時間改變的影響 42 II. 探頭孔徑大小對回波訊號頻率隨時間改變的影響 43 III. 橫向位移對回波訊號頻率隨時間改變的影響 45 Chpater 4 二階式結構對回波訊號的影響 49 4.1 二階式結構的建設性與破壞性干涉 49 4.2 實驗架構 50 I. 設計結構 50 II. 實驗架構 51 4.3 實驗結果與討論 52 I. 實驗結果 52 II. 反射率之影響 53 III. 曲面結構以提升角度偵測的彈性 55 Chpater 5 結論 58 5.1 三結構比較 58 5.2 結論 59 5.3 未來工作 61 I. 異質性的影響 61 II. 實際應用 61 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超音波無線傳輸 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 植入器 | zh_TW |
| dc.subject | 頻譜 | zh_TW |
| dc.subject | 馬雅聲音繞射 | zh_TW |
| dc.subject | ultrasonic wireless communication | en |
| dc.subject | implanted device | en |
| dc.subject | microstructure | en |
| dc.subject | frequency spectrum. | en |
| dc.title | 設計微結構應用於超音波定位 | zh_TW |
| dc.title | Microstructure Design for Detection of Implantable Device
Using Ultrasound | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 田維誠,沈哲州,鄭耿璽,劉建宏 | |
| dc.subject.keyword | 馬雅聲音繞射,超音波無線傳輸,植入器,微結構,頻譜, | zh_TW |
| dc.subject.keyword | ultrasonic wireless communication,implanted device,microstructure,frequency spectrum., | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
