請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61068完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦 | |
| dc.contributor.author | Yu-Chun Sun | en |
| dc.contributor.author | 孫羽君 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:44:35Z | - |
| dc.date.available | 2018-08-16 | |
| dc.date.copyright | 2013-08-16 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | Backstrom, Lars, Huttenlocher, Dan, Kleinberg, Jon, & Lan, Xiangyang. (2006). Group formation in large social networks: membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 44-54). ACM.
Bollen, Dirk, Knijnenburg, Bart P., Willemsen, Martijn C., & Graus, Mark. (2010). Understanding choice overload in recommender systems. In Proceedings of the fourth ACM conference on Recommender systems (pp. 63-70). ACM. boyd, danah m, & Ellison, Nicole B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer‐Mediated Communication, 13(1), 210-230. Burke, Robin. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4), 331-370. Candillier, Laurent, Meyer, Frank, & Fessant, Francoise. (2008). Designing specific weighted similarity measures to improve collaborative filtering systems. In Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects (pp. 242-255). Springer Berlin Heidelberg. Chen, Chien Chin, Wan, Yu-Hao, Chung, Meng-Chieh, & Sun, Yu-Chun. (2012). An effective recommendation method for cold start new users using trust and distrust networks. Information Sciences: an International Journal, 224, 19-36. Cornelis, Chris, Guo, Xuetao, Lu, Jie, & Zhang, Guanquang. (2005). A Fuzzy Relational Approach to Event Recommendation. In Proceedings of 2nd Indian International Conference on Artificial Intelligence (pp. 2231-2242). Daly, Elizabeth M., & Geyer, Werner. (2011). Effective event discovery: using location and social information for scoping event recommendations. In Proceedings of the fifth ACM conference on Recommender systems (pp. 277-280). ACM. Dooms, S., De Pessemier, T., & Martens, L. (2011). A user-centric evaluation of recommender algorithms for an event recommendation system. In Proceedings of the RecSys 2011 : Workshop on Human Decision Making in Recommender Systems (Decisions@RecSys'11) and User-Centric Evaluation of Recommender Systems and Their Interfaces - 2 (UCERSTI 2) affiliated with the 5th ACM Conference on Recommender Systems (RecSys 2011) (pp. 67-73). Ghent University, Department of Information technology. Guo, Xuetao, Zhang, Guangquan, Chew, Eng, & Burdon, Steve. (2005). A hybrid recommendation approach for one-and-only items. In AI 2005: Advances in Artificial Intelligence(pp. 457-466). Springer Berlin Heidelberg. Herlocker, Jonathan L., Konstan, Joseph A., Borchers, Al, & Riedl, John. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 230-237). ACM. Hofmann, Thomas. (1999). Probabilistic latent semantic indexing. InProceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50-57). ACM. Jaccard, Paul. (1901). Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Societe Vaudoise des Sciences Naturelles, 37, 547-579. Jin, Rong, Chai, Joyce Y., & Si, Luo. (2004). An automatic weighting scheme for collaborative filtering. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 337-344). ACM. Klamma, Ralf, Cuong, PhamManh, & Cao, Yiwei. (2009). You never walk alone: Recommending academic events based on social network analysis. In Complex Sciences (pp. 657-670). Springer Berlin Heidelberg. Massa, Paolo, & Avesani, Paolo. (2007). Trust-aware recommender systems. In Proceedings of the 2007 ACM conference on Recommender systems (pp. 17-24). ACM. Minkov, Einat, Charrow, Ben, Ledlie, Jonathan, Teller, Seth, & Jaakkola, Tommi. (2010). Collaborative future event recommendation. In Proceedings of the 19th ACM international conference on Information and knowledge management (pp. 819-828). ACM. Park, Seung-Taek, Pennock, David, Madani, Omid, Good, Nathan, & DeCoste, Dennis. (2006). Naive filterbots for robust cold-start recommendations. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 699-705). ACM. Pazzani, MichaelJ, & Billsus, Daniel. (2007). Content-based recommendation systems. In The adaptive web (pp. 325-341). Springer Berlin Heidelberg. Salter, James, & Antonopoulos, Nick. (2006). CinemaScreen recommender agent: combining collaborative and content-based filtering. Intelligent Systems, IEEE,21(1), 35-41. Salton, Gerard, & Buckley, Christopher. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523. Sarwar, Badrul, Karypis, George, Konstan, Joseph, & Riedl, John. (2000). Application of dimensionality reduction in recommender system-a case study (No. TR-00-043). MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE. Sarwar, Badrul, Karypis, George, Konstan, Joseph, & Riedl, John. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM. Schein, Andrew I., Popescul, Alexandrin, Ungar, Lyle H., & Pennock, David M. (2002). Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 253-260). ACM. Su, Xiaoyuan, & Khoshgoftaar, Taghi M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009, 4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61068 | - |
| dc.description.abstract | 許多社群網站(SNSs)提供社交活動的功能以促進使用者之間的互動。但是,社群網站上活動的數量相當龐大,對於網站使用者來說,要從中找到感興趣的活動是很困難的。本論文研究此問題並提出一個社交活動推薦方法,利用使用者的社交式友誼和協同式友誼來推薦使用者感興趣的活動。由於活動具有唯一性,在活動結束之前很難取得活動的評分,因此傳統的推薦方法並不能適用於活動推薦,因為這些方法必須要足夠的歷史評分資料才能產生推薦。在不使用評分的情況下,本論文分析了使用者社群網路的行為模式,並衡量其社交式友誼和偕同式友誼。這些友誼集結之後,將用以辨識使用者的「熟人」,並且根據這些熟人的偏好將活動推薦給使用者。實驗結果顯示本論文所提出的方法是有效的,且優於許多著名的推薦方法。 | zh_TW |
| dc.description.abstract | Many social network sites (SNSs) provide social event functions to facilitate user interactions. However, it is difficult for users to find interesting events among the huge number posted on such sites. In this paper, we investigate the problem and propose a social event recommendation method that exploits user’s social and collaborative friendships to recommend events of interest. As events are one-and-only items, their ratings are not available until they are over. Hence, traditional recommendation methods are incapable of event recommendation because they need sufficient ratings to generate recommendations. Instead of using ratings, we analyze the behavior patterns of social network users to measure their social and collaborative friendships. The friendships are aggregated to identify the acquaintances of a user and events relevant to the preferences of the acquaintances and the user are recommended. The results of experiments show that the proposed method is effective and it outperforms many well-known recommendation methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:44:35Z (GMT). No. of bitstreams: 1 ntu-102-R00725005-1.pdf: 1174506 bytes, checksum: 1ed718e4277ab13b1d48fe7e6728d77f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv LIST OF CONTENTS v LIST OF FIGURES vi LIST OF TABLES vii 1. Introduction 1 2. Related Work 4 2.1 New Item Cold Start Recommendations 4 2.2 Social Event Recommendations 5 3. The Proposed Event Recommendation Method 7 3.1 Acquaintance Identification 8 3.2 Recommendation Generation 12 4. Experiments 13 4.1 Dataset and Performance Metrics 13 4.2 System Component Evaluation 14 4.3 Comparison with other recommendation methods 21 5. Concluding Remarks 26 REFERENCE 27 | |
| dc.language.iso | en | |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 社群網路 | zh_TW |
| dc.subject | social network | en |
| dc.subject | recommendation systems | en |
| dc.title | 基於社交式和協同式友誼之新穎社交活動推薦方法 | zh_TW |
| dc.title | A Novel Social Event Recommendation Method Based on Social and Collaborative Friendships | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰,蔡銘峰,盧信銘 | |
| dc.subject.keyword | 社群網路,推薦系統, | zh_TW |
| dc.subject.keyword | social network,recommendation systems, | en |
| dc.relation.page | 30 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
