Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆(Feipei Lai)
dc.contributor.authorYi-Ju Tsengen
dc.contributor.author曾意儒zh_TW
dc.date.accessioned2021-06-16T10:44:21Z-
dc.date.available2016-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61064-
dc.description.abstract醫療相關感染的發生不僅會增加醫院的花費,也會使病人住院天數增加,以及增加死亡率等,此外,造成醫療相關感染之病原菌的變遷導致治療藥物選擇的困難,以及伴隨而來影響病人的預後及醫療資源的支出,包括多重抗藥性微生物與念珠菌等,故醫療相關感染的預防與控制已經是醫院最重要的問題之一。為此我們開發了基於網路的醫療相關感染監測及管理系統,並在其中使用規則、族群與個體分析等方法,實作了管制圖、群聚分析與資料探勘技術來幫助感染管制師與相關醫護人員執行感染控制業務。此系統建立在台灣某教學醫院,首先,醫療相關感染與包括多重抗藥性微生物的目標菌株會由完善定義的規則選出,選出的標的做進一步的族群與個體分析,或是以結構化的方式呈現給感控護理師。族群層級分析以抗萬古黴素腸球菌 (Vancomycin-Resistant Enterococcus)作為實驗標的,使用管制圖搭配群聚分析以偵測群突發的發生;個體層級分析則是使用資料探勘技術,分辨出念珠菌菌血症與常見細菌菌血症。與標準對照後,得到偵測醫療相關血流感染的敏感性是98.16%,特異性是99.93%,此外,與使用此系統前的收案情況相比,經迴歸分析部門間與時序間的相關性後,可分別得到R平方值為1.00與0.89,收案延遲時間也有顯著縮短(P<.001)。偵測抗萬古黴素腸球菌的群突發的最佳標準為90%信賴區間上限搭配菌株規則和群聚分析,可得到ROC曲線下面積0.93,且在菌株數(P=.001)、個案數(P=.04)以及新個案數(P=.001)的計算條件下,使用群聚分析可使偵測效能顯著提升。在個體分析的實驗中,使用歸納邏輯程式(Inductive logic programming),配合使用者提供的背景知識以及單變數分析算出的背景知識,可得到F1 score 0.437以及正確性0.713,實驗結果也顯示歸納邏輯程式在有配合適當的背景知識的狀況下,可以得到更好的結果 (P=.015)。由此可知,此系統可準確的判別醫療相關感染與多重抗藥性微生物,並且可正確偵測多重抗藥性微生物群突發的發生,以及協助醫師做個體念珠菌感染的決策與判斷。zh_TW
dc.description.abstractHealthcare-associated infections (HAIs) are a major patient safety issue, and related pathogen, such as multidrug-resistant organism (MDRO) and Candida species, are causing a global crisis. These adverse events add to the burden of resource use, promote resistance to antibiotics, and contribute to patient deaths and disability.
A Web-based HAI surveillance system was developed for automatic integration, analysis, and interpretation of HAIs and related pathogens. Rule-based classification, population-based and patient-based pathogen surveillance were incorporated in the system, and control chart analysis, clustering analysis and data mining algorithm were implemented to facilitate infection control surveillance.
Electronic medical records from a 2200-bed teaching hospital in Taiwan were classified according to predefined criteria of HAIs and MDROs in rule-based classification system. The detailed information in each HAI was presented systematically to support infection control personnel decision. Comparing to infection control personnel’s review, this system has sensitivity of 98.16%, specificity of 99.93%, positive predictive value of 95.81% and negative predictive value of 99.97%. The consistency of HAIs’ time trends (R2=0.89) and department distribution (R2=1.00) between in absence and in presence of the system were also proved. The healthcare-associated bloodstream infection detection delay is significantly decreased after using this system (P<.001).
Then, the numbers of organisms in each MDRO pattern were presented graphically to describe spatial and time information in population-based pathogen surveillance system. Hierarchical clustering with 7 upper control limits (UCL) was used to detect suspicious outbreaks. The system’s performance was evaluated in three parts: HAIs and MDROs classification, outbreak detection based on vancomycin-resistant enterococcal outbreaks, and infection prediction based on candidiasis. The optimal UCL for MDRO outbreak detection was the upper 90% confidence interval (CI) using germ criterion with clustering (area under ROC curve (AUC) 0.93, 95% CI 0.91 to 0.95). The performance indicators of each UCL were statically significant higher with clustering than those without clustering in germ criterion (P < .001), patient criterion (P = .04), and incident patient criterion (P < .001).
Finally, there were 3 data mining algorithms including support vector machine, decision tree and inductive logic programming (ILP) being used for patient-based Candida infection prediction, and a generalized linear model was set as the baseline. In addition, the effect of adding background knowledge into ILP was also evaluated. The optimal Candida infection prediction model was ILP with background knowledge from specialist and computer algorithms, having F1 score of 0.437 and accuracy of 0.713. This research provided a preliminary result of applying data mining algorithms to Candida infection prediction, approving that adopting background knowledge could improve the performance of Candida infection prediction (P=.015).
This system automatically identifies HAIs and MDROs, accurately detect suspicious outbreak of MDROs based on the antimicrobial susceptibility of all clinical isolates, and effectively classifies Candida infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:44:21Z (GMT). No. of bitstreams: 1
ntu-102-F97945017-1.pdf: 2692116 bytes, checksum: 8f32e848f2bd9c7ba9063dc4871bec1f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF APPENDIXES xiii
Chapter 1 Introduction 1
1.1 Surveillance of Healthcare-associated Infection 1
1.2 Multidrug-resistant Organisms 3
1.3 Candida Infections 5
1.4 Clinical Decision Support System 6
1.5 Literature Review 7
1.5.1 Rule-based Decision-support Systems 7
1.5.2 Decision-support Systems for Detecting Abnormal Events Using Statistical Process Control 12
1.5.3 Model-based Decision-support Systems for Pathogen Prediction 14
1.6 System Design 20
Chapter 2 Rule-based Organism and HAI Classification System 23
2.1 Data Collection Subsystem 25
2.2 Candidate Detection Subsystem 25
2.3 Conflicts Process Subsystem 31
2.4 Evaluation of Rule-based HAI and MDRO Classification System Performance 32
2.5 Performance of Rule-based HABSI Classification 34
2.5.1 Performance of the automated detection rules 34
2.5.2 Comparison of HABSIs in absence of the system 35
2.5.3 Comparison of HABSI detection delay 37
2.6 Performance of Rule-based MDRO Classification 38
2.7 Principal Results of Rule-based HAI and Organism Classification System 39
2.8 Limitations of Rule-based HAI and Organism Classification System 41
Chapter 3 Population-based Surveillance and Analysis System 43
3.1 MDRO Clustering Subsystem 43
3.2 MDRO Analysis Subsystem 46
3.3 MDRO Visualization Subsystem 48
3.4 HAI Management System 51
3.5 Evaluation of Population-based Surveillance and Analysis System Performance 54
3.6 Performance of Population-based Pathogen Outbreak Detection 56
3.7 Principal Results of Population-based Surveillance and Analysis System 60
3.8 Limitations of Population-based Surveillance and Analysis System 63
Chapter 4 Patient-based Data Mining and Event Prediction System 66
4.1 Prediction Model Establishment 66
4.2 Data Collection and Preprocessing 67
4.3 Evaluation of Patient-based Data Mining and Event Prediction Systems 70
4.4 Performance of Patient-based Data Mining and Event Prediction System 71
4.5 Principal Results of Candidemia Prediction Model 76
4.6 Limitations of Patient-based Data Mining and Event Prediction System 78
Chapter 5 Conclusions and Future Work 80
5.1 Conclusions 80
5.2 Future Work 80
Reference 82
dc.language.isoen
dc.subject群聚分析zh_TW
dc.subject監測系統zh_TW
dc.subject醫療相關感染zh_TW
dc.subject多重抗藥微生物zh_TW
dc.subject抗生素感受性分析zh_TW
dc.subject資料探勘zh_TW
dc.subject基於網路的服務zh_TW
dc.subject感染控制zh_TW
dc.subjectdata miningen
dc.subjectmultidrug resistanceen
dc.subjectsurveillanceen
dc.subjectinfection controlen
dc.subjectinformation systemsen
dc.subjectcluster analysisen
dc.subjecthealthcare-associated infectionen
dc.subjectweb-based servicesen
dc.title基於規則、族群與個體分析的醫療相關感染網路監測系統zh_TW
dc.titleA Web-based Healthcare-associated Infection Surveillance System based on Rule, Population, and Patienten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor陳宜君(Yee-Chun Chen)
dc.contributor.oralexamcommittee譚慶鼎(Ching-Ting Tan),莊人祥(Jen-Hsiang Chuang),趙坤茂(Kun-Mao Chao),歐陽彥正(Yen-Jen Oyang),張博論(Po-Lun Chang)
dc.subject.keyword醫療相關感染,多重抗藥微生物,監測系統,抗生素感受性分析,資料探勘,基於網路的服務,感染控制,群聚分析,zh_TW
dc.subject.keywordhealthcare-associated infection,multidrug resistance,surveillance,infection control,information systems,cluster analysis,data mining,web-based services,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved