請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Ying-Chin Lo | en |
| dc.contributor.author | 羅英秦 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:44:00Z | - |
| dc.date.available | 2016-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | 1. Anderl, B., Attmannspacher, W., & Schultz, G. A. (1976). Accuracy of reservoir inflow forecasts based on radar rainfall measurements. Water Resources Research, 12(2), 217-223.
2. Andreassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C., & Loumagne, C. (2004). Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall‐runoff models: A theoretical study using chimera watersheds. Water Resources Research, 40(5). 3. Atger, F. (2001). Verification of intense precipitation forecasts from single models and ensemble prediction systems. Nonlinear processes in Geophysics,8(6), 401-417. 4. Bartholmes, J. C., Thielen, J., Ramos, M. H., & Gentilini, S. (2009). The european flood alert system EFAS–Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrology and Earth System Sciences, 13(2), 141-153. 5. BALINT, G., CSIK, A., BARTHA, P., GAUZER, B., & BONTA, I. (2006). Application of meteorological ensembles for Danube flood forecasting and warning. In Transboundary floods: reducing risks through flood management(pp. 57-68). 6. Bone, R., Crucianu, M., & Asselin de Beauville, J. P. (2002). Learning long-term dependencies by the selective addition of time-delayed connections to recurrent neural networks. Neurocomputing, 48(1), 251-266. 7. Bonta, I. (2006). Using ensemble precipitation forecasts for hydrological purposes. In Geophysical Research Abstracts (Vol. 8, p. 06027). 8. Borga, M., Anagnostou, E. N., & Frank, E. (2000). On the use of real‐time radar rainfall estimates for flood prediction in mountainous basins. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D2), 2269-2280. 9. Brockwell, P. J., & Davis, R. A. (2009). Time series: theory and methods. Springer. 10. Chang, F.J., Chang, L. C., & Huang, H. L. (2002). Real‐time recurrent learning neural network for stream‐flow forecasting. Hydrological Processes, 16(13), 2577-2588. 11. Chang, L. C., Chang, F. J., & Chiang, Y. M. (2004). A two‐step‐ahead recurrent neural network for stream‐flow forecasting. Hydrological Processes, 18(1), 81-92. 12. Chang, L. C., Chang, F. J., & Wang, Y. P. (2009). Auto‐configuring radial basis function networks for chaotic time series and flood forecasting. Hydrological Processes, 23(17), 2450-2459. 13. Chang, L. C., Chen, P. A., & Chang, F. J. (2012). Reinforced two-step-ahead weight adjustment technique for online training of recurrent neural networks.Neural Networks and Learning Systems, IEEE Transactions on, 23(8), 1269-1278. 14. Chiang, Y. M., Chang, L. C., & Chang, F. J. (2004). Comparison of static-feedforward and dynamic-feedback neural networks for rainfall–runoff modeling. Journal of Hydrology, 290(3), 297-311. 15. Chiang, Y. M., Chang, F. J., Jou, B. J. D., & Lin, P. F. (2007). Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology, 334(1), 250-261. 16. Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., & Chang, F. J. (2010). Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. Hydrology and Earth System Sciences, 14(7), 1309-1319. 17. Chtourou, S., Chtourou, M., & Hammami, O. (2008). A hybrid approach for training recurrent neural networks: application to multi-step-ahead prediction of noisy and large data sets. Neural Computing and Applications, 17(3), 245-254. 18. Cloke, HL & F. Pappenberger (2009). Ensemble Flood forecasting: a review. Journal of Hydrology 375:613-626. 19. Coulibaly, P., Anctil, F., & Bobee, B. (2001). Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering,6(5), 367-376. 20. Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43(1), 47-66. 21. Einfalt, T., Denoeux, T., & Jacquet, G. (1990). A radar rainfall forecasting method designed for hydrological purposes. Journal of Hydrology, 114(3), 229-244. 22. El-Shafie, A., Taha, M.R. & Noureldin, A., (2007). A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resources Management, 21(3):533-566. 23. Firat, M. &Gungor, M. (2007). River flow estimation using adaptive neuro fuzzy inference system. Mathematics and Computers in Simulation, 75(3-4):87-96. 24. Firat, M. & Gungor, M. (2008). Hydrological time-series modeling using an adaptive neuro-fuzzy inference system. Hydrological Processes, 22(13):2122-2132. 25. Hashem, S. (1992). Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions. In Neural Networks, 1992. IJCNN., International Joint Conference on (Vol. 1, pp. 419-424). IEEE. 26. Hunter, A., Kennedy, L., Henry, J., & Ferguson, I. (2000). Application of neural networks and sensitivity analysis to improved prediction of trauma survival.Computer methods and programs in biomedicine, 62(1), 11-19. 27. Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, 233(1), 138-153. 28. Jain, S.K., Das, A. & Srivastava, D.K., (1999). Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management-Asce, 125(5):263-271. 29. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685. 30. Johnell, A., Lindstrom, G., & Olsson, J. (2007). Deterministic evaluation of ensemble streamflow predictions in Sweden. Nordic Hydrology, 38(4-5), 441-450. 31. Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing in Civil Engineering,8(2), 201-220. 32. Komma, J., Reszler, C., Bloschl, G., & Haiden, T. (2007). Ensemble prediction of floods? Catchment non-linearity and forecast probabilities. 33. Kouwen, N., & Garland, G. (1989). Resolution considerations in using radar rainfall data for flood forecasting. Canadian Journal of Civil Engineering, 16(3), 279-289. 34. Krzysztofowicz, R. (1999). Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 35(9), 2739-2750. 35. Li, C., He, S., Liao, X., & Yu, J. (2002). Using recurrent neural network for adaptive predistortion linearization of RF amplifiers. International Journal of RF and Microwave Computer‐Aided Engineering, 12(1), 125-130. 36. Liguori, S., Rico-Ramirez, M. A., Schellart, A. N. A., & Saul, A. J. (2012). Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research, 103, 80-95. 37. Mimikou, M. A., & Baltas, E. A. (1996). Flood forecasting based on radar rainfall measurements. Journal of Water Resources Planning and Management,122(3), 151-156. 38. Mirikitani, D. T., & Nikolaev, N. (2010). Recursive Bayesian recurrent neural networks for time-series modeling. Neural Networks, IEEE Transactions on,21(2), 262-274. 39. Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2005). Short‐term flood forecasting with a neurofuzzy model. Water Resources Research, 41(4). 40. Ogden, F. L., & Julien, P. Y. (1994). Runoff model sensitivity to radar rainfall resolution. Journal of Hydrology, 158(1), 1-18. 41. Olsson, J. & Linstrom, G. (2008). Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. Journal of Hydrology 350:14-24. 42. Parlos, A. G., Rais, O. T., & Atiya, A. F. (2000). Multi-step-ahead prediction using dynamic recurrent neural networks. Neural networks, 13(7), 765-786. 43. Pessoa, M. L., Bras, R. L., & Williams, E. R. (1993). Use of weather radar for flood forecasting in the Sieve River basin: A sensitivity analysis. Journal of Applied Meteorology, 32, 462-475. 44. Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review, 130(1), 103-114. 45. Renner, M., MGF Werner, Rademacher, S. & E. Sprokkereef (2009). Verification of ensemble flow forecasts for the River Rhine. Journal of Hydrology 276:463-375. 46. Roulin, E. & Vannitsem, S. (2005). Skill of medium-range hydrological ensemble predictions. Journal of Hydrometeorology 6:729-744. 47. Roy Bhowmik, S. K., & Durai, V. R. (2008). Multi-model ensemble forecasting of rainfall over Indian monsoon region. Atmosfera, 21(3), 225-239. 48. Sivakumar, B., Jayawardena, A. W., & Fernando, T. M. K. G. (2002). River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265(1), 225-245. 49. Xie, J. X., Cheng, C. T., Chau, K. W., & Pei, Y. Z. (2006). A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. International Journal of Environment and Pollution, 28(3), 364-381. 50. Xuan, Y., Cluckie, I. D., & Wang, Y. (2009). Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrology and Earth System Sciences, 13(3), 293-303. 51. Yang, S. S., Ho, C. L., & Siu, S. (2010). Computing and analyzing the sensitivity of MLP due to the errors of the iid inputs and weights based on CLT.Neural Networks, IEEE Transactions on, 21(12), 1882-1891. 52. Yazdizadeh, A., & Khorasani, K. (2002). Adaptive time delay neural network structures for nonlinear system identification. Neurocomputing, 47(1), 207-240. 53. Yu, P., Chou, J., Chiu, Y., Yang, T., & Kuo, C. (2011, December). Real-Time Flood Estimation by Using Radar Rainfall data and Distributed Rainfall-Runoff Model. In AGU Fall Meeting Abstracts (Vol. 1, p. 1234). 54. Zeng, X., & Yeung, D. S. (2001). Sensitivity analysis of multilayer perceptron to input and weight perturbations. Neural Networks, IEEE Transactions on, 12(6), 1358-1366. 55. Zhang, Y., & Wang, J. (2001). Recurrent neural networks for nonlinear output regulation. Automatica, 37(8), 1161-1173. 56. 王如意、潘宗毅、宋文元,2004,「遞迴式類神經網路之系統辨識及其於降雨-逕流模擬之研究」,臺灣水利39(1),1-14。 57. 王珍貴,2007,「應用類神經網路模式模擬颱風降雨量」,成功大學水利及海洋研究所碩士論文。 58. 王琮美,2005,「降雨條件與集水區出流量關係之探討」,國立中央大學土木工程研究所碩士論文。 59. 何宜樺,2009,「建構集水區多時刻降雨-逕流機制與類神經網路洪水預報模式」,臺灣大學生物環境系統工程研究所碩士論文。 60. 李南慶,2007,「颱風影響集水區流域的降雨量與逕流量關係之研究」,淡江大學水資源及環境工程學系碩士論文。 61. 林詩潔,2012,「辛樂克颱風(2008)降雨系集模擬與分析-卡爾曼濾波器資料同化」,國立臺灣大學大氣科學研究所碩士論文。 62. 林沛練,2010,數值氣候模式系集預報之應用與驗證,行政院國家科學委員會研究計畫。 63. 周昆炫、黃柏智,2010,渦旋植入對不同降水物理參數法颱風路徑系集預報之影響研究,大氣科學,第三十八卷第四期,301-329。 64. 孫建平,1996,「類神經網路及其應用於降雨及逕流過程之研究」,國立臺灣大學農業工程研究所碩士論文。 65. 張斐章、胡湘帆、黃源義,1998,「反傳遞模糊類神經網路於流量推估之應用」,中國農業工程學報44(2),26-38。 66. 張斐章、胡湘帆、蕭錫清、張長圖,2000,「模糊類神經網路於水庫及時入流量預測之應用」,台電工程月刊618,7-19。 67. 張斐章、張麗秋,2010,「類神經網路導論:原理與應用」,滄海書局。 68. 張麗秋、王國威、張斐章,2008,「逐時更新類神經網路於河川多階段洪水預測之探討」,台灣水利52(3),12-21。 69. 許清炫,2005,「流域集水區降雨量與逕流量之分析與探討」,淡江大學水資源及環境工程學系碩士論文。 70. 陳永祥,2009,「演化式類神經網路於水文系統預測之研究」,臺灣大學生物環境系統工程研究所博士論文。 71. 陽明仁,2001,颱風伴隨強風與豪雨之觀測與預報技術發展-子計畫:颱風伴隨強風豪雨之數值系集預報技術的發展及研究,行政院國家科學委員會研究計畫。 72. 蔡孟蓉,2006,「類神經網路結合衛星影像預報颱風降雨量」,臺灣大學生物環境系統工程研究所碩士論文。 73. 鄭家豪,2008,「改良式倒傳遞類神經網路於水庫入流量預報之研究」,國立臺灣大學土木工程研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61058 | - |
| dc.description.abstract | 台灣因地理位置特殊,每年平均約有3.5個颱風會侵襲台灣,加上台灣的特殊地形,使得河川坡陡流急,河川的集流時間相當短,集水區降雨往往於數小時內就會抵達水庫。藉此,如果能於颱風期間,提供數小時後水庫入流量的資訊,有助於水庫操作人員有更充分的時間做應變。
本研究採用地面雨量站之雨量資訊及雷達雨量資訊(QPESUMS)分別探討曾文集水區之降雨逕流特性,結果顯示集水區上游至下游的逕流延時一致為兩小時具有最高相關性,並根據此結果作為模式輸入之依據,以雷達雨量資訊(QPESUMS)和當時刻流量作為模式輸入建構類神經網路之多時刻水庫入庫流量預報模式,結果以BPNN、ANFIS及RNN三種類神經網路所建置之流量預報模式具有優異的表現,其中BPNN在1~3小時內預報有最好的結果;ANFIS則對於流量峰值的預測具有最好之結果;而RNN在長時距4~6小時的預報效果最為優異,此部分結果顯示不同理論之類神經網路模式具有不同之優點。 系集預報模式起源於大氣領域,目前於大氣領域當中已有相當多的應用,而水文模式對於系集預報之應用目前尚在發展當中,本研究以系集預報之概念,整合前述三多種流量預報模式之結果,以倒傳遞類神經網路建置系集流量預報模式,並結合敏感度分析找出各流量模式於各時刻所代表之權重,透過系集預報整合之後提供更穩定及更精確之水庫入流量預報模式。 | zh_TW |
| dc.description.abstract | Due to unique geographical location of Taiwan, an average of 3.5 typhoons attack Taiwan each year. In addition, the particular topographical terrains of Taiwan make rivers short and steep such that rivers rapidly flow from catchments to reservoirs within a few hours during typhoon events. It will be very helpful and useful for reservoir operation management if reservoir inflow information can be provided in the next few hours after typhoons initially arrive.
This study investigates the rainfall-runoff process of reservoir catchment by using two different rainfall information: rain gauge precipitation data and radar rainfall data (QPESUMS: Quantitative Precipitation Estimation and Segregation Using Multiple Sensors). The Zhengwen Reservoir catchment is the study area. The correlation analysis results show that it takes only two hours for rainfall to travel from catchment to reservoir in the study area. Therefore, this study aims to build up multi-step-ahead reservoir inflow forecast models through artificial neural networks based on QPESUMS and inflow information. The results indicate that all the BPNN, ANFIS and RNN models have excellent estimation performance. The BPNN model performs the best for one- to three-hour-ahead forecasts, while the RNN model has the best performance for four- to six-hour-ahead forecasts. The ANFIS model is superior to the other models for peak flow forecasts. The results demonstrate that each neural network has its own distinct advantages from others. Ensemble forecasting was originated from Atmospheric sciences and has been developed for years. In this study, we build up an ensemble forecast model by incorporating the outputs of three constructed forecast models into the BPNN to produce multi-step-ahead reservoir inflow forecasts, and further conduct the sensitivity analysis to summarize the weights of individual models incorporated in the ensemble forecast model for each time step. The results demonstrate that the ensemble forecast model can provide more reliable and accurate multi-step-ahead reservoir inflow forecasts than individual models incorporated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:44:00Z (GMT). No. of bitstreams: 1 ntu-102-R00622030-1.pdf: 9508277 bytes, checksum: f79313e7e3a432e347ed2020a1a094e5 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表格目錄 xi 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究架構 2 第二章 文獻回顧 4 2.1 集水區降雨-逕流特性分析 4 2.2 類神經網路於水文預報之應用 5 2.3 系集預報之應用 6 第三章 理論概述 7 3.1 類神經網路 7 3.2 倒傳遞類神經網路(BPNN) 10 3.3 調適性網路模糊推論系統(ANFIS) 17 3.4 回饋式類神經網路(RNN) 21 3.5 非線性自回歸類神經網路模式(NARX) 22 3.6 敏感度分析(sensitivity analysis) 23 3.7 評估指標 24 3.7.1 相關係數(CC) 24 3.7.2 效率係數(CE) 24 3.7.3 均方根誤差(RMSE) 25 3.7.4 平均絕對誤差(MAE) 25 第四章 研究案例 26 4.1 研究區域概述 26 4.2 資料蒐集與處理 28 4.2.1 資料蒐集 28 4.2.2 降雨-逕流特性探討 29 4.3 流量預報模式架構 34 4.4 系集預報模式架構 35 第五章 結果與討論 36 5.1 BPNN流量預報模式 36 5.2 ANFIS流量預報模式 41 5.3 RNN流量預報模式 46 5.4 NARX流量預報模式 50 5.5 系集流量預報模式 51 第六章 結論與建議 62 6.1 結論 62 6.2 建議 63 第七章 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水庫入流量預報模式 | zh_TW |
| dc.subject | 系集預報 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 敏感度分析 | zh_TW |
| dc.subject | 多時刻預報 | zh_TW |
| dc.subject | Artificial neural network (ANN) | en |
| dc.subject | Sensitivity analysis | en |
| dc.subject | Multi-step-ahead forecast | en |
| dc.subject | Ensemble forecasting | en |
| dc.subject | Reservoir inflow model | en |
| dc.title | 多時刻河川流量系集預報模式 | zh_TW |
| dc.title | Multi-step-ahead reservoir inflow forecasts using neural networks with ensemble method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張麗秋,黃文政,張國強,陳永祥 | |
| dc.subject.keyword | 水庫入流量預報模式,系集預報,類神經網路,敏感度分析,多時刻預報, | zh_TW |
| dc.subject.keyword | Reservoir inflow model,Ensemble forecasting,Artificial neural network (ANN),Sensitivity analysis,Multi-step-ahead forecast, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
