請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | |
| dc.contributor.author | Ming-Hao Yang | en |
| dc.contributor.author | 楊明皓 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:43:11Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | [1] N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applica-
tions,. Hafner Press, 1975. [2] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the re- sponse function of a social system. PNAS, 105(41):15649–15653, 2008. [3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977. [4] N. Du, L. Song, A. Smola, and M. Yuan. Learning networks of heterogeneous influence. In NIPS ’12: Advances in Neural Information Processing Systems, 2012. [5] N. Eagle, A. S. Pentland, and D. Lazer. From the cover: Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36):15274–15278, Sept 2009. [6] M. Gomez-Rodriguez, D. Balduzzi, and B. Sch‥olkopf. Uncovering the temporal dynamics of diffusion networks. In ICML ’11: Proc. of the 28th International Con- ference on Machine Learning, 2011. [7] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and inference. In KDD ’10: Proc. of the 16th ACM SIGKDD International Confer- ence on Knowledge Discovery in Data Mining, 2010. [8] M. Gomez-Rodriguez, J. Leskovec, and B. Sch‥olkopf. Structure and dynamics of in- formation pathways in online media. In WSDM ’13: ACM International Conference on Web Search and Data Mining, 2013. [9] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of inference through a social network. In KDD ’03: Proc. of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003. [10] M. Kolar, L. Song, A. Ahmed, and E. Xing. Estimating time-varying networks. The Annals of Applied Statistics, 4(1):94–123, 2010. [11] J. Lawless. Statistical models and methods for lifetime data. Wiley New York, 1982. [12] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. In EC ’06: Proc. of the 7th ACM conference on Electronic commerce, 2006. [13] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. In KDD ’09: Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. [14] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kro- necker graphs: An approach to modeling networks. The Journal of Machine Learn- ing Research, 11:985–1042, 2010. [15] A. C. Lozano and V. Sindhwani. Block variable selection in multivariate regression and high-dimensional causal inference. In NIPS ’10: Advances in Neural Informa- tion Processing Systems:, 2010. [16] S. Myers and J. Leskovec. On the convexity of latent social network inference. In NIPS ’10: Advances in Neural Information Processing Systems, 2010. [17] S. Myers and J. Leskovec. Clash of the contagions: Cooperation and competition in information diffusion. In ICDM ’12: Proc. of the 12th IEEE International Confer- ence on Data Mining, 2012. [18] S. Myers, C. Zhu, and J. Leskovec. Information diffusion and external inference in networks. In KDD ’12: Proc. of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012. [19] B. Prakash, A. Beutel, R. Rosenfeld, and C. Faloutsos. Winner takes all: competing viruses or ideas on fair-play networks. In WWW ’11: Proc. of the 21st International Conference on World Wide Web, pages 1037–1046, 2012. [20] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, pages 400–407, 1951. [21] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of infor- mation diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In WWW ’11: Proc. of the 20th International Conference on World Wide Web, 2011. [22] T. Snowsill, N. Fyson, T. D. Bie, and N. Cristianini. Refining causality: who copied from whom? In KDD ’11:Proc. of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011. [23] J. Wallinga and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epi- demiology, 160(6):509–516, 2004. [24] L. Wang, S. Ermon, and J. E. Hopcroft. Feature-enhanced probabilistic models for diffusion network inference. In PKDD ’12: European Conference on Principles and Practice of Knowledge Discovery in Databases, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61044 | - |
| dc.description.abstract | 訊息散播與病毒傳播常常是時常發生的網路上的基本過程, 最近
如何設計一個策略促進或阻止這個過程獲得了很大的注意; 然而,其 中最大的問題是,傳播的通道往往是隱蔽的。換句話說, 我們可以觀 察到網路中的點何時被訊息「感染」,但卻無法知道這些點是如何被 傳播的。 大部分處理這類問題的方法是假設有一個潛在的網路。訊息 可以在這個網路上傳播。 然而,在實際的情況下,訊息通道的存在與 很多因素相關,如 : 傳播的訊息的主題,傳播的時間等。 舉例來說,政 治新聞傳播的方式會跟運動新聞或其他類型的新聞不同。政治新聞的 本身也會因為時間的不同而有不同的傳播方式。選舉時,訊息傳播的 速度會較平常快速。在這種情況下,只用一個網路來模擬整個過程是 相當困難的。 在這篇論文中,我們提出了一個演算法 MixCascades 。 這個演算法 讓我們可以叢集相似的傳播記錄並對每一個叢集推論一個相對應的網 路。此外,我們提出一個方法可以自動選取適當的叢集數量。藉由合 成跟真實資料,我們發現我們的演算法可以非常有效率的叢集歷史訊 息並且還原真正的網路。 | zh_TW |
| dc.description.abstract | Information diffusion and virus propagation are fundamental processes
often taking place in networks. The problem of devising a strategy to fa- cilitate or block such process has received considerable attention. However, a major challenge is that transmission pathways are often hidden. In other words, one can only observe cascades, time stamps when nodes are infected with events, but couldn’t know where and from whom nodes are infected. Most researches dealing with the problem assume an underlying network over which cascades spread. In real world, whether the transmission path- ways of a contagion, a piece of information, emerges or not depends on many factors such as the topic of the information and the time when the information first are first mentioned. Political news, for example, spreads in a different way from sports news. Political news itself spreads differently as time varies. It spreads much faster when there is an election than usual. Therefore, it is hard to model the diffusion processes by using only one single network when information are of all kind. In this thesis, we proposed an probabilistic generative mixture model that models the generation of cascades, the time-stamps when the nodes mention information. Our algorithm, MixCascades, could cluster similar cascades and infer a corresponding underlying network for each cluster in the expectation- maximization framework. Besides, our algorithm could determine the num- ber of clusters automatically. In both synthetic and real cascade data, we show that our algorithm could cluster cascades and recover the underlying networks very effectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:43:11Z (GMT). No. of bitstreams: 1 ntu-102-R00942050-1.pdf: 406457 bytes, checksum: 7bc2b2f54831071e1ee4303b290ed35d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Acknowledgments i
中文摘要 ii Abstract iii Contents iv List of Figures v List of Tables vi 1 INTRODUCTION 1 2 RELATED WORK 6 3 PROBLEM FORMULATION 8 4 ALGORITHM 15 5 EXPERIMENTAL EVALUATION 23 5.1 Experiments on synthetic data . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Experiment on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 CONCLUSION 35 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 傳播 | zh_TW |
| dc.subject | 叢集 | zh_TW |
| dc.subject | 網路 | zh_TW |
| dc.subject | clustering | en |
| dc.subject | diffusion | en |
| dc.subject | network | en |
| dc.title | 叢集傳播紀錄 : 用傳播資料推論多個訊息網路 | zh_TW |
| dc.title | Cluster Cascades : Infer Multiple Information Networks Using
Diffusion Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭文志,陳孟彰,葉彌妍 | |
| dc.subject.keyword | 叢集,傳播,網路, | zh_TW |
| dc.subject.keyword | clustering,diffusion,network, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 396.93 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
