Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲
dc.contributor.authorMing-Hao Yangen
dc.contributor.author楊明皓zh_TW
dc.date.accessioned2021-06-16T10:43:11Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applica-
tions,. Hafner Press, 1975.
[2] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the re-
sponse function of a social system. PNAS, 105(41):15649–15653, 2008.
[3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38,
1977.
[4] N. Du, L. Song, A. Smola, and M. Yuan. Learning networks of heterogeneous
influence. In NIPS ’12: Advances in Neural Information Processing Systems, 2012.
[5] N. Eagle, A. S. Pentland, and D. Lazer. From the cover: Inferring friendship network
structure by using mobile phone data. Proceedings of the National Academy of
Sciences, 106(36):15274–15278, Sept 2009.
[6] M. Gomez-Rodriguez, D. Balduzzi, and B. Sch‥olkopf. Uncovering the temporal
dynamics of diffusion networks. In ICML ’11: Proc. of the 28th International Con-
ference on Machine Learning, 2011.
[7] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion
and inference. In KDD ’10: Proc. of the 16th ACM SIGKDD International Confer-
ence on Knowledge Discovery in Data Mining, 2010.
[8] M. Gomez-Rodriguez, J. Leskovec, and B. Sch‥olkopf. Structure and dynamics of in-
formation pathways in online media. In WSDM ’13: ACM International Conference
on Web Search and Data Mining, 2013.
[9] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of inference
through a social network. In KDD ’03: Proc. of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003.
[10] M. Kolar, L. Song, A. Ahmed, and E. Xing. Estimating time-varying networks. The
Annals of Applied Statistics, 4(1):94–123, 2010.
[11] J. Lawless. Statistical models and methods for lifetime data. Wiley New York, 1982.
[12] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing.
In EC ’06: Proc. of the 7th ACM conference on Electronic commerce, 2006.
[13] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics
of the news cycle. In KDD ’09: Proc. of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2009.
[14] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kro-
necker graphs: An approach to modeling networks. The Journal of Machine Learn-
ing Research, 11:985–1042, 2010.
[15] A. C. Lozano and V. Sindhwani. Block variable selection in multivariate regression
and high-dimensional causal inference. In NIPS ’10: Advances in Neural Informa-
tion Processing Systems:, 2010.
[16] S. Myers and J. Leskovec. On the convexity of latent social network inference. In
NIPS ’10: Advances in Neural Information Processing Systems, 2010.
[17] S. Myers and J. Leskovec. Clash of the contagions: Cooperation and competition in
information diffusion. In ICDM ’12: Proc. of the 12th IEEE International Confer-
ence on Data Mining, 2012.
[18] S. Myers, C. Zhu, and J. Leskovec. Information diffusion and external inference in
networks. In KDD ’12: Proc. of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2012.
[19] B. Prakash, A. Beutel, R. Rosenfeld, and C. Faloutsos. Winner takes all: competing
viruses or ideas on fair-play networks. In WWW ’11: Proc. of the 21st International
Conference on World Wide Web, pages 1037–1046, 2012.
[20] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.
[21] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of infor-
mation diffusion across topics: idioms, political hashtags, and complex contagion
on twitter. In WWW ’11: Proc. of the 20th International Conference on World Wide
Web, 2011.
[22] T. Snowsill, N. Fyson, T. D. Bie, and N. Cristianini. Refining causality: who copied
from whom? In KDD ’11:Proc. of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2011.
[23] J. Wallinga and P. Teunis. Different epidemic curves for severe acute respiratory
syndrome reveal similar impacts of control measures. American Journal of Epi-
demiology, 160(6):509–516, 2004.
[24] L. Wang, S. Ermon, and J. E. Hopcroft. Feature-enhanced probabilistic models for
diffusion network inference. In PKDD ’12: European Conference on Principles and
Practice of Knowledge Discovery in Databases, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61044-
dc.description.abstract訊息散播與病毒傳播常常是時常發生的網路上的基本過程, 最近
如何設計一個策略促進或阻止這個過程獲得了很大的注意; 然而,其
中最大的問題是,傳播的通道往往是隱蔽的。換句話說, 我們可以觀
察到網路中的點何時被訊息「感染」,但卻無法知道這些點是如何被
傳播的。 大部分處理這類問題的方法是假設有一個潛在的網路。訊息
可以在這個網路上傳播。 然而,在實際的情況下,訊息通道的存在與
很多因素相關,如 : 傳播的訊息的主題,傳播的時間等。 舉例來說,政
治新聞傳播的方式會跟運動新聞或其他類型的新聞不同。政治新聞的
本身也會因為時間的不同而有不同的傳播方式。選舉時,訊息傳播的
速度會較平常快速。在這種情況下,只用一個網路來模擬整個過程是
相當困難的。
在這篇論文中,我們提出了一個演算法 MixCascades 。 這個演算法
讓我們可以叢集相似的傳播記錄並對每一個叢集推論一個相對應的網
路。此外,我們提出一個方法可以自動選取適當的叢集數量。藉由合
成跟真實資料,我們發現我們的演算法可以非常有效率的叢集歷史訊
息並且還原真正的網路。
zh_TW
dc.description.abstractInformation diffusion and virus propagation are fundamental processes
often taking place in networks. The problem of devising a strategy to fa-
cilitate or block such process has received considerable attention. However,
a major challenge is that transmission pathways are often hidden. In other
words, one can only observe cascades, time stamps when nodes are infected
with events, but couldn’t know where and from whom nodes are infected.
Most researches dealing with the problem assume an underlying network
over which cascades spread. In real world, whether the transmission path-
ways of a contagion, a piece of information, emerges or not depends on many
factors such as the topic of the information and the time when the information
first are first mentioned. Political news, for example, spreads in a different
way from sports news. Political news itself spreads differently as time varies.
It spreads much faster when there is an election than usual. Therefore, it is
hard to model the diffusion processes by using only one single network when
information are of all kind.
In this thesis, we proposed an probabilistic generative mixture model that
models the generation of cascades, the time-stamps when the nodes mention
information. Our algorithm, MixCascades, could cluster similar cascades and
infer a corresponding underlying network for each cluster in the expectation-
maximization framework. Besides, our algorithm could determine the num-
ber of clusters automatically. In both synthetic and real cascade data, we
show that our algorithm could cluster cascades and recover the underlying
networks very effectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:43:11Z (GMT). No. of bitstreams: 1
ntu-102-R00942050-1.pdf: 406457 bytes, checksum: 7bc2b2f54831071e1ee4303b290ed35d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgments i
中文摘要 ii
Abstract iii
Contents iv
List of Figures v
List of Tables vi
1 INTRODUCTION 1
2 RELATED WORK 6
3 PROBLEM FORMULATION 8
4 ALGORITHM 15
5 EXPERIMENTAL EVALUATION 23
5.1 Experiments on synthetic data . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Experiment on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 CONCLUSION 35
Bibliography 37
dc.language.isoen
dc.subject傳播zh_TW
dc.subject叢集zh_TW
dc.subject網路zh_TW
dc.subjectclusteringen
dc.subjectdiffusionen
dc.subjectnetworken
dc.title叢集傳播紀錄 : 用傳播資料推論多個訊息網路zh_TW
dc.titleCluster Cascades : Infer Multiple Information Networks Using
Diffusion Data
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭文志,陳孟彰,葉彌妍
dc.subject.keyword叢集,傳播,網路,zh_TW
dc.subject.keywordclustering,diffusion,network,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
396.93 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved