Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61035
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安
dc.contributor.authorGuan-Ting Linen
dc.contributor.author林冠廷zh_TW
dc.date.accessioned2021-06-16T10:42:40Z-
dc.date.available2016-08-16
dc.date.copyright2013-08-16
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation1. Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. Adv. Mater. 2010, 22, 1-4.
2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
3. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M. R.; Hjertberg, T.; Wennerstrom, O. Nature 1994, 372, 444-446.
4. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-543.
5. Qiu, L. Z.; Lee, W. H.; Wang, X. H.; Kim, J. S.; Lim, J. A.; Kwak, D.; Lee, S.; Cho, K. Adv. Mater. 2009, 21, 1349-1353.
6. Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679-686.
7. Xu, W. T.; Li, L. G.; Tang, H. W.; Li, H.; Zhao, X. L.; Yang, X. N. J. Phys. Chem. B 2011, 115, 6412-6420.
8. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402-428.
9. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. S. Adv. Mater. 2000, 12, 1737-1750.
10. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491-1546.
11. P. Davide Cozzoli, A. K., and Horst Weller. J. AM. CHEM. SOC. 2003, 125, 14539-14548.
12. Joo, J.; Kwon, S. G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T. J. Phys. Chem. B 2005, 109, 15297-15302.
13. Hideki, S.; Edwin, J. L.; Alan, G. M.; Chwan, K. C.; Alan, J. H. Journal of the Chemical Society, Chemical Communications 1977, 16, 578-580.
14. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Physical Review Letters 1977, 39, (17), 1098-1101.
15. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. AM. CHEM. SOC. 1978, 100, (3), 1013-1015.
16. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. g.; Chiang, C. K.; Heeger, A. J. J. C. S. Chem. Comm. 1997, 578-580.
17. Scrosati, B. Polymer International 1998, 47, 50-55.
18. Fangyi, C.; Wei, T.; Chunsheng, L.; Jun, C.; Huakun, L.; Panwen, S.; Shixue, D. Chemistry - A European Journal 2006, 3082-3088.
19. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, (6378), 477-479.
20. Vanlaeke, P.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; Manca, J.; Heremans, P.; Poortmans, J. Thin Solid Films 2006, 511-512, 358-361.
21. Dyer, A.; Grenier, C.; Reynolds, J. A. Advanced Functional Materials 2007, 1480-1486.
22. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Nature 1998, 395, (6699), 257-260.
23. Jun, G.; Gang, Y.; Alan, J. H. Adv. Mater. 1998, 692-695.
24. D., S.; K., N.; O., D. C.; G., D. S.; R., G. J. AM. CHEM. SOC. 2009, 131, 17726-17727.
25. Sato, M.; Morii, H. Polym. Commun. 1991, 32, 42-44.
26. Sato, M.; Morii, H. Macromolecules 1991, 24, 1196-1200.
27. R.Sugimoto; S.Takeda; H.B.Gu; K.Yoshino. Chem. Express 1986, 1, 635.
28. Chen, T. A.; Wu, X. M.; D., R. R. J. AM. CHEM. SOC. 1995, 117, 233-244.
29. D., M. R.; t.S.T.-N.; Williams, t. R. D. L. a. S. P.; yaramant, M. a. k. J. a. J. AM. CHEM. SOC. 1993, 115, 4910-4911.
30. Chen, S.-A.; Ni, J.-M. J. AM. CHEM. SOC. 1992, 25, (23), 6081-6089.
31. Iovu, M. C.; E., S. E.; R., G. R.; R.D., M. Macromolecules 2004, 37, (3526-3528).
32. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. AM. CHEM. SOC. 2005, 127, (49), 17542-17547.
33. R.D., M. Macromolecules 1996, 29, 3654-3656.
34. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685-688.
35. Jen, K.-Y.; Miller, G. G.; Elsenbaumer, R. L. J. Chem. Soc., Chem. Commun. 1986, 1346-1347.
36. Elsenbaumer, R. L.; Jen, K. Y.; Oboodi, R. Synth. Met. 1986, 15, 169-174.
37. Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F. Macromolecules 1987, 20, 212-215.
38. Yang, X.; Loos, J. Macromolecules 2007, 40, 1353-1362.
39. N., Y. X.; J., L.; C., V. S.; H., V. W. J.; M., W. M.; M., K. J.; Michels, M. A. J.; Janssen, R. A. J. Nano Lett. 2005, 5, (4), 579-583.
40. Chen, L. M.; Hong, Z. R.; Li, G.; Yang, Y. Adv. Mater. 2009, 21, 1434-1449.
41. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864-868.
42. Lu, G. H.; Li, L. G.; Yang, X. N. Adv. Mater. 2007, 19, 3594-3598.
43. Lu, G. H.; Li, L. G.; Yang, X. N. Macromolecules 2008, 41, 2062-2070.
44. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chemical Reviews 1995, 95, 735-738.
45. Fujishima, A.; Hashimoto, K.; Watanabe, T., TiO2 Photocatalysis: Fundamentals and Applications. BKC., Inc.: Tokyo, 1999.
46. Levin, E. M.; Robbins, C. R.; McMurdie, H. F.; Society, A. C., Phase diagrams for ceramists. Columbus, Inc.: 1975.
47. Diebold, U. Surface Science Reports 2003, 48, 53-229.
48. Kittel, C., Introduction to Solid State Physics. 7 ed.; John Wiley and Sons, Inc.: New York, 1996.
49. Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781-7787.
50. Djaoued, Y. Journal of Sol-Gel Science and Technology 2002, 24, 255-264.
51. PENN, R. L.; BANFIELD, J. F. American Mineralogist 1999, 84, 871-876.
52. Qiu, L.; Liu, F.; Zhao, L.; Yang, W.; Yao, J. Langmuir 2006, 22, 4480-4482.
53. Lachkar, A.; Selmani, A.; Sacher, E.; Leclerc, M.; Mokhliss, R. Synthetic Metals 1994, 66, 209-215.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61035-
dc.description.abstract本實驗藉由聚己烷噻吩導電高分子作為結構模板,製作混成二氧化鈦之有機/無機奈米混成系統。本研究揭露一簡易的原位合成方式,利用鈦離子(Ti4+)與高分子之噻吩官能基間的分子間作用力(intermolecular interaction)使二氧化鈦前趨物(Titanium tetraisopropoxide, Ti4+(OiPr)44-, TTIP)與高分子進行嵌合而均勻分散形成P3HT/Ti4+混成系統,為了避免二氧化鈦聚集而無法成為奈米等級顆粒,透過化學氣相沉積的概念,先將P3HT/Ti4+溶液成膜使之固化為P3HT/Ti4+薄膜再利用含水之高壓蒸氣使之進行原位融膠-凝膠反應而形成奈米級非晶質二氧化鈦,其再於高壓下進行結晶而形成奈米級結晶相二樣化鈦,成功製作P3HT/TiO2之混成系統。
透過GIWAXS光譜儀確認二氧化鈦之結晶型態中,發現高壓蒸氣的種類、溫度、與TTIP的反應時間會影響P3HT的結晶、二氧化鈦的結晶顆粒大小和結晶型態的轉變甚至是自組裝行為,藉由了解各種參數的影響可控制二氧化鈦之結晶。透過二維GIWAXS的結果提出一種新概念:在二氧化鈦結晶過程進行第二次自組裝行為,此行為與金紅石(rutile)的低溫形成機制有相同概念。並透過XPS的檢測證實Ti4+與噻吩官能基之間的嵌合反應,利用TEM了解此混成系統的型態為一句有良好方向性的奈米線。最後透過UV-vis和PL的分析知道此混成系統擁有良好的光電性質可應用於太陽能電池。
zh_TW
dc.description.abstractIn this study, we used P3HT as a template in-situ synthesizing titanium dioxide to manufacture an organic/inorganic nanohybrid system. This study reveals a simple in-situ method to manufacture a P3HT/TiO2 hybrid system. First, we made a P3HT/Ti4+ hybrid system by the formation of complextion via the intermolecular interaction between thiophene and titanium ions (Ti4+). To preserve TiO2 crystallizing in nanoscale, via the concept of chemical vapor deposition, we first let the solvent of P3HT/Ti4+ hybrid solution to evaporate to form a P3HT/Ti4+ hybrid thin film. Following, we used high pressure vapor containing H2O proceeding the in-situ sol-gel process to form a nanoscale amorphous TiO2, and then by the high pressure treatment, amorphous TiO2 crystallized to a nanoscale crystalline TiO2. We manufactured a P3HT/TiO2 nanohybrid system successfully.
In the GIWAXS measurement, we found that many factors, containing the kinds of vapor conditions, reaction temperature and reaction time, affected the P3HT crystal structure, TiO2 crystal size, the transformation of TiO2 crystal structure and even the self-assembly. We can control the crystalline of TiO2 via finding out the influence of these parameters. In the 2D GIWAXS measurement, we provide a new concept: the hybrid system will proceed second self-assembly in the crystallization process. This attributed to the same concept with the mechanism of rutile formation in low temperature. In XPS measurement, we confirmed our assumption of intermolecular interaction between thiophene and titanium ions. The TEM profile reveals that the morphology of our hybrid system has good orientation to be a nanowire. Finally, via the UV-vis and PL analysis, we know the optical properties are good to be used in solar cells application.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:42:40Z (GMT). No. of bitstreams: 1
ntu-102-R00524089-1.pdf: 5663944 bytes, checksum: 8c2669cb4ce6de5b2d9470180575881e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstrate II
List of Figures VI
List of Tables X
Chapter 1. Introduction 1
Chapter 2. Literature Review 5
2-1 Introduction of conducting polymer 5
2-2 Configuration and synthesis of Poly (alkyl-thiophene) and Grignard Metathesis (GRIM) 7
2-3 Applications of poly(3-alkyl thiophene) 14
2-4 Fundamental properties of Titanium Oxide, TiO2 15
2-5 The sol-gel process for a titanium alkoxide 21
Chapter 3. Experimental 23
3-1 Materials and Equipments 23
3-2 Synthesis of poly(-3-hexylowythiophene) 26
3-3 In-Situ Bonding Ti4+ via P3HT Polymer as a Template 28
3-4 Preparation of P3HT/Ti4+ nanowire 29
3-5 In-situ Formation of TiO2 Nanoparticles within Polymer Film 31
3-6 Characterization 32
3-6-1 Gel Permeation Chromatography (GPC). 32
3-6-2 (XPS). 33
3-6-3 Transmission Electron Microscopy (TEM). 34
3-6-4 UV-VIS Spectroscopic Analysis. 34
3-6-5 Photoluminescence Analysis (PL). 35
3-6-6 Wide-Angle X-ray Scattering (WAXS). 35
Chapter 4. Results and Discussion 36
4-1 Study on manufacturing process of P3HT/TiO2 hybrid system forming by high pressure treatment 36
4-2 2D GIWAXS spectra of P3HT/TiO2 nanohybrids 53
4-3 XPS of P3HT/TiO2 nanohybrids system 65
4-4 Morphology of P3HT/TiO2 nanohybrids system 68
4-5 Optical properties of P3HT/TiO2 Nanohybrid system 72
Chapter 5. Conclusion 79
Reference 81
dc.language.isozh-TW
dc.subject高壓原位合成zh_TW
dc.subject聚己烷?吩zh_TW
dc.subject二氧化鈦zh_TW
dc.subject奈米混成系統zh_TW
dc.subjectin-situ high pressure synthesisen
dc.subjectnanohybrid systemen
dc.subjectTiO2en
dc.subjectP3HTen
dc.title以高壓原位合成法製備二氧化鈦/聚己烷噻吩高分子 奈米混成系統:製程研究及太陽能電池應用zh_TW
dc.titleIn-Situ High Pressure Synthesis of P3HT/TiO2 Nanohybrid System and Its Application in Solar Cellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信龍,王立義,程耀毅,楊長謀
dc.subject.keyword聚己烷?吩,二氧化鈦,高壓原位合成,奈米混成系統,zh_TW
dc.subject.keywordP3HT,TiO2,in-situ high pressure synthesis,nanohybrid system,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved