請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章 | |
| dc.contributor.author | Wan-Yu Chang | en |
| dc.contributor.author | 張琬渝 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:42:33Z | - |
| dc.date.available | 2016-08-16 | |
| dc.date.copyright | 2013-08-16 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | 1. Aealbjorn S, Končar N, Jones AJ, 1997, “A note on the gamma test”, Neural Computing & Applications., 5(3): 131-133.
2. Almasri M.N., Kaluarachchi J.J., 2005, “Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data”, Environmental Modelleing and Software, 20 (7): 851–871. 3. Anibas C., Buis K., Verhoeven R., Meire P., Batelaan O., 2011, “A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction”, Journal of Hydrology, 397(1-2): 93-104. 4. Antar M.A., Elassiouti I., Allam M.N., 2006, “Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study”, Hydrological Processes, 20(5): 1201–1216. 5. Arnold J.G., Muttiah R.S., Srinivasan R., Allen P.M., 2000, “Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin”, Journal of Hydrology, 227(1-4): 21–40. 6. Bredehoeft J.D., 1967, “Response of well-aquifer systems to earth tides”, Journal of Geophysical Research, 72(12): 3075-3087. 7. Chang F.J., Chang L.C., Kao H.S. and Wu G.R., 2010, “Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network”, Journal of Hydrology, 384(1-2): 118-129. 8. Chang F.J., Chang L.C., Wang Y.S., 2007, “Enforced self-organizing map neural networks for river flood forecasting”, Hydrological Processes, 21(6): 741–749. 9. Chang F.J., Chang Y.T., 2006, “Adaptive neuro-fuzzy inference system for prediction of water level in reservoir”, Advances in Water Resources, 29(1):1-10. 10. Chang F.J., Chen P.A., Liu C.W., Liao V.H.C., Liao C.M., 2013, “Regional Estimation of Groundwater Arsenic Concentrations through Systematical Dynamic-neural Modeling”, Journal of Hydrology. 11. Chang F.J., Hwang Y.Y., 1999, “A Self-organization algorithm for real-time flood forecast”, Hydrological Processes, 13(2): 123-138. 12. Chang F.J., Kao L.S., Kuo Y.M., Liu C.W., 2010, “Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan”, Journal of Hydrology, 388(1-2): 65–76. 13. Chang L.C., Chang F.J., Tsai Y.H., 2005, “The Fuzzy Exemplar-Based Inference System for Flood Forecasting”, Water Resources Research, 41(2): 1-12. 14. Chang F.J. and Chen Y.C., 2001, “A counterpropagation fuzzy-neural network modeling approach to real-time streamflow prediction”, Journal of Hydrology, 245(1-4): 153-164. 15. Chaves P., Toshiharu K., 2007, “Conceptual fuzzy neural network model for water quality simulation”, Hydrological Processes, 21(5): 634–646. 16. Chen W.P., Lee C.H., 2003, “Estimating ground-water recharge from streamflow records”, Environmental Geology, 44(3): 257-265. 17. Coppola E.A. Jr., Duckstein L., Davis D., 2002, “Fuzzy Rule-based Methodology for Estimating Monthly Groundwater Recharge in a Temperate Watershed”, Journal of Hydraulic Engineering, 7(4): 326-335. 18. Dahiya S., Singh B., Gaur S., Garg V.K. , Kushwaha H.S., 2007, “Analysis of groundwater quality using fuzzy synthetic evaluation”, Journal of Hazardous Materials, 147(3): 938–946. 19. Daliakopoulos I.N., Coulibalya P., Tsanis I.K., 2005, “Groundwater level forecasting using artificial neural networks”, Journal of Hydrology, 309(1-4): 229-240. 20. Delin G.N., Healy R.W., Lorenz D.L., Nimmo J.R., 2007, “Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA”, Journal of Hydrology, 334(1-2): 231– 249. 21. Gurwin J., Lubczynski M., 2005, “Modeling of complex multi-aquifer systems for groundwater resources evaluation—Swidnica study case (Poland)”, Hydrogeology Journal, 13(4):627-639. 22. Halford K.J., Mayer G.C., 2000, “Problems Associated with Estimating Ground Water Discharge and Recharge from Stream-Discharge Records”, No.3-GROUND WATER, 38(3): 331-342. 23. Hasebe M., Nagayama Y., 2002, “Reservoir operation using the neural network and fuzzy systems for dam control and operation support”, Advances in Engineering Software, 33(5): 245-260. 24. Huang W.C., Hsieh C.L., 2010, “Real‐time reservoir flood operation during typhoon attacks”, Water Resources Research, 46(7), doi:10.1029/2009WR008422. 25. Hydrogeological record series, 2009, ‘Groundwater recharge from the Gascoyne River’, Western Australia, Government of Western Australia Department of Water. 26. Jacob C.E., 1940, “The flow of water in an elastic artesian aquifer”, Eos Transactions American Geophysical Union, 21(2): 574-586. 27. Jang J.S.R. and Sun C.T., 1997, ‘Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence’, Prentice-Hall, Inc., 614 pp. 28. Jang J.S.R., 1993, “ANFIS - adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems Man and Cybernetics, 23(3): 665-685. 29. Kalbus E., Reinstorf F., Schirmer M., 2006, “Measuring methods for groundwater – surface water interactions: a review”, Hydrology and Earth System Sciences, 10(6): 873-887. 30. Karaboga D., Aytekin B., Tefaruk H., 2004, “Fuzzy Logic Based Operation of Spillway Gates of Reservoirs during Floods”, Journal of Hydrologic Engineering, 9(6): 544-549. 31. Končar N., 1997, “Optimisation methodologies for direct inverse neurocontrol, PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London. 32. Krause S., Bronstert A., 2007, “The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany”, Hydrological Processes, 21(2): 169-184. 33. Krause S., Bronstert A., Zehe E., 2007, “Groundwater–surface water interactions in a North German lowland floodplain – Implications for the river discharge dynamics and riparian water balance”, Journal of Hydrology, 347(3-4): 404-417. 34. Liu Y. and Sheng Z., 2011, “Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande”, Journal of Hydrology, 409(3-4): 710-723. 35. Maidment D.R., 1993, ‘Handbook of hydrology’, McGraw-Hill, New York . 36. Mamdani E.H., Assilian S., 1975, “Experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies, 7(1): 1-13. 37. Matsumoto N., 1992. Regression analysis for anomalous changes of ground water level due to earthquakes. Geophysical Research Letters, 19(12), 1193-1196. 38. Mau D.P. and Winter T.C., 1997, “Estimating Ground-Water Recharge from Streamflow Hydrographs for a Small Mountain Watershed in a Temperate Humid Climate, New Hampshire, USA”, No.2-GROUND WATER, 35(2): 291-304. 39. Mendel J.M., 2001, ‘Uncertain rule-based fuzzy logic systems : introduction and new directions’, Prentice-Hall, Inc. 40. Moghaddamnia A., Gousheh G.M., Piri J., Amin S., Han D., 2009, “Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques”, Advances in Water Resources, 32(1): 88-97. 41. Moon S.K., Woo N.C., Lee K.S., 2004. “Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge”, Journal of Hydrology, 292(1-4): 198-209. 42. Nayak, 2006, “Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach”, Water Resources Management, 20(1): 77–90. 43. Noori R., Hoshyaripour G., Ashrafi K., Araabi B.N., 2010, “Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration”, Atmospheric Environment, 44 (4): 476-482. 44. Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., Gousheh M.G., 2011, “Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction”, Journal of Hydrology, 401(3-4): 177-189. 45. Nourani V., Ejlali R.G., Alami M.T., 2011, “Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study”, Environmental Engineering Science, 28 (3), 217–228. 46. Nourani V., Mogaddam A.A., Nadiri A.O., 2008, “An ANN-based model for spatiotemporal groundwater level forecasting”, Hydrologcal Processes, 22(26): 5054–5066. 47. Parkin G., Birkinshawa S.J., Youngerb P.L., Raoc Z., Kirk S., 2007, “A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows”, Journal of Hydrology, 339(1-2): 15-28. 48. PART: A computerized method of base-flow-record estimation, USGS, http://water.usgs.gov/ogw/part/ . 49. Pearson K., 1896, “Mathematical contributions to the theory of evolution─III. Regression, heredity and panmixia”, Philosophical Transactions of the Royal Society of London. Series A, 187: 253-318. 50. Peranginangin N., Sakthivadivel R., Scott N.R., Kendy E., Steenhuis T.S., 2004, “Water accounting for conjunctive groundwater/surface water management: case of the Singkarak–Ombilin River basin, Indonesia”, Journal of Hydrology, 292(1-4): 1-22. 51. Rojstaczer S., 1988, “Determination of fluid flow properties from the response of water levels in wells to barometric loading”, Water Resources Research, 24(11): 1927-1938. 52. Rutledge A.T., Daniel III C.C., 1994, “Testing an Automated Method to Estimate Ground-Water Recharge from Streamflow Records”, No.2-GROUND WATER, 32(2): 180-189. 53. Rutledge A.T.,1997, “Model-Estimated Ground-Water Recharge and Hydrograph of Ground-Water Discharge to a Stream”. 54. SCIENCE for DECISION MAKERS, 2007, ‘Groundwater Recharge’, Australian Government Bureau of Rural Sciences. 55. Sophocleous M.A., 1991, “Combining the soilwater balance and water-level fluctuation methods to estimated natural groundwater recharge practical aspects”, Journal of Hydrology, 124(3-4): 229-241. 56. Sugeno M., Kang G.T., 1988, “Structure identification of fuzzy model”, Fuzzy Sets and Systems, 28(1): 15-33. 57. Takagi T., Sugeno M., 1985, “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems Man and Cybernetics, 15(1): 116-132. 58. Taormina R., Chau L.W., Sethi R., 2012, “Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon”, Engineering Applications of Artificial Intelligence, 25(8): 1670-1676. 59. Tayfur G., Singh V.P., F.ASCE, 2006, “ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff”, Journal of Hydraulic Engineering, 132(12):1321-1330. 60. Tutmez B., Hatipoglu Z., Kaymak U., 2006, “Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system”, Computers and Geosciences, 32(4): 421–433. 61. Van der Kamp G., Gale J.E., 1983, “Theory of earth tides and barometric effects in porous formations with compressible grains”, Water Resources Research, 19(2): 538-544. 62. Osman Y.Z., Bruen M.P., 2002, “Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW”, Journal of Hydrology, 264(1-4): 69–86. 63. 中興工程顧問,2010,「台灣山區地下水資源調查研究整體計畫」。 64. 江衍銘、張麗秋、張斐章,2002,「回饋式類神經網路於二階段即時流量預測」,臺灣水利,第50卷,第2期,第15-21頁。 65. 江崇榮,2006,「以地下水歷線分析法評估濁水溪沖積扇之地下水收支」,經濟部中央地質調查所彙刊,第十九號,第61-89頁。 66. 江崇榮、黃智昭、陳瑞娥、費立沅,2004,「屏東平原地下水補注量及抽水量之評估」,經濟部中央地質調查所彙刊,第17 號,第21-53頁。 67. 余貴坤,1986,「降雨量與深井水位變動的關係研究」,台灣地區地球物理研討會,第165-173 頁。 68. 余貴坤、簡顯光、陳遠斌、呂佩玲、趙曉玲,2008,「發展除去非構造因子影響水位變化效應的技術」,中央氣象局地震技術報告彙編,第 48 卷,第217-230頁。 69. 吳建宏、張天豪、王安培,2009,「模糊決策在洪水期間橋梁安全預警系統之應用-以新海大橋為例」,第17屆模糊理論及其應用研討會。 70. 李品輝,2009,「以類神經網路探討全台蒸發量區域性分類與推估之成效」,國立臺灣大學生物環境系統工程學研究所碩士論文。 71. 李振誥、陳尉平、李如晃,2002,「應用基流資料估計法推估臺灣地下水補注量」,臺灣水利,第50卷,第1期,第69-80頁。 72. 林正道,2003,「土石流危險度之模糊迴歸分析和綜合評判」,中原大學土木工程學系碩士學位論文。 73. 林承賢,2012,「以類神經網路建構濁水溪流域地下水位推估模式」,國立台灣大學碩士論文。 74. 林進國,2003,「降雨和地下水位變化之關聯性分析」,國立成功大學水利及海洋工程研究所碩士論文。 75. 林燕初、黃智昭,「山區地下含水層水文地質單元建立初探 -以濁水溪流域及北港溪流域為例」。 76. 邱敏農,2000,以河川流量歷線推估台灣中部森林集水區地下水補注及其流出量之研究,國立中興大學水土保持學系研究所碩士論文。 77. 南投縣政府環境保護局,2007,「南投縣濁水溪沖積扇上游地區地下水硝酸鹽氮污染潛勢評估及地下水保護策略」。 78. 洪益發、梁昇,2004,「以模糊邏輯分析集水區暴雨逕流關係型態之研究」,水土保持學報,第36卷,第3期,第259-270頁。 79. 洪耀明、萬絢、蘇苗彬、林裕益,2009,「崩塌地地下水位變化之即時預測」,水保技術,第4卷,第3期,第181-189頁。 80. 徐年盛、林尉濤、陳敬文,2009,「運用類神經網路預測濁水溪沖積扇地下水位變化之研究」,中國土木水利工程學刊,第21卷,第3期,第285-293頁。 81. 徐年盛、魏志強、陳敬文、陳俊廷,2009,「應用類神經網路於地面地下水聯合運用之硏究 --以雲林地區為例」,海峽兩岸水利科技交流研討會。 82. 徐國錦,2005,「淡水河流域水資源乾旱預警機制與風險管理策略之建立-子計劃:淡水河流域抗旱地下水資源可利用之研究(I)」,行政院國家科學委員會。 83. 高華聲、劉得名,2005,「模糊理論於水井操作之應用」,臺灣水利,第53卷,第4期,第85-96頁。 84. 高慧珊,2007,「以自組特徵映射網路推估蒸發量」,國立臺灣大學生物環境系統工程學研究所碩士論文。 85. 張良正、陳宇文、朱宏杰、黃浚瑋,2008,「遺傳演算法與類神經網路於地表地下聯合營運之應用」,農業工程學報,第54卷,第2期,第81-93頁。 86. 張凱堯、張斐章,2007,「反傳遞模糊類神經網路於抽水站操作之應用」,農業工程學報,第53卷,第1期,第82-91頁。 87. 張斐章、張麗秋,2010,「類神經網路導論」,蒼海書局。 88. 張斐章、黃源義、梁晉銘,1993,「模糊推論模式之建立及其應用於水文系統之研究」,中國農業工程學報,第39卷,第1期,第71-83頁。 89. 張斐章、楊翰宗、陳彥璋,2002,「以類神經網路模擬光滑陡坡明渠水流最大流速發生位置」,臺灣水利,第50卷,第1期,第34-43頁。 90. 曹以松,1995,『地下水』,中國土木水利工程學會。 91. 許弘政、張麗秋,2009,「模糊控制模式於颱洪時期水庫即時操作之研究,臺灣水利,第57卷,第4期,第87-101頁。 92. 許昊,2010,地下水補注量推估之研究-以濁水溪沖積扇為例,國立臺灣大學生物環境系統工程學研究所學位論文。 93. 陳正斌,2004,應用模糊理論於颱風降雨量之推估,國立成功大學水利及海洋工程研究所碩士論文。 94. 陳宗顯,2006,「降雨引致地下水位變化之研究 - 以那菝、六甲與東和地下水位觀測井為例」,國立成功大學水利及海洋工程研究所博士論文。 95. 陳宗顯、詹錢登、陳伸賢、曾鈞敏,2005,「降雨和地下水位變化之相關性研究」,台灣水利,第53卷,第4期,第1-12頁。 96. 陳忠偉、潘文健、李振誥,2002,「濁水溪沖積扇與屏東平原地下水合適出水量之研究」,臺灣水利,第50卷,第3期,第70-82頁。 97. 陳奕如,2011,「地表水與地下水聯合營運優選模式之發展」,臺灣大學生物環境系統工程學研究所學位論文。 98. 陳昶憲、蔡國慶、黃尹龍,2001,「模糊類神經網路應用於集水區出流量之預測」,中國土木水利工程學刊,第13卷,第2期,第395-403。 99. 陳尉平,2006,應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程學系博士論文。 100. 陳聖傑,2012,「地下水位之主成分分係-以濁水溪沖積扇為例」,國立成功大學資源工程學系碩士論文。 101. 集集攔河堰主題網,http://www.wracb.gov.tw/mp.asp?mp=2。 102. 黃文政、李詩茜、袁倫欽,2006,「乾旱預警系統之建置─以翡翠水庫為例」,台灣水利,第54卷,第3期,第5-17頁。 103. 黃皇嘉、溫志超、謝孟益,2005,「降雨量大小對土壤入滲機制之影響」,農業工程學報,第51卷,第1期,第34 -45頁。 104. 黃傭評,2010,應用河川歷線推估流域含水層參數及地下水補注量,國立成功大學資源工程學系博士論文。 105. 詹錢登、陳宗顯、陳伸賢、曾鈞敏,2005,「降雨引致地下水位上升經驗關係式之研究」,第二屆資源工程研討會論文集。 106. 農業工程學會,1999,「彙編『台灣地區地下水--濁水溪沖積扇篇』」。 107. 經濟部中央地質調查所,2010,「台灣山區地下水資源調查研究整體計畫-第一期,台灣中段山區地下水資源調查與評估成果報告書」。 108. 經濟部中央地質調查所,2010,「臺灣地區地下水區水文地質調查及地下水資源評估─地下水補注潛勢評估與地下水模式建置」。 109. 經濟部水利署,2008,「地震與地下水文異常變化分析研究(3/4)」。 110. 經濟部水利署,2012,「中部山區水資源與地下水補注交互機制之探討」。 111. 蔡國慶,1999,「模糊類神經網路應用在集水區出流量之預測」,逢甲大學土木及水利工程研究所碩士學位論文。 112. 鄭皆達,2009,以河川流量歷線推估台灣中部森林集水區地下水補注及其流出量之研究,國立中興大學水土保持學系研究所學位論文。 113. 鄭皆達、洪豪男、周良勳,2003,「應用時間數列方法分析降雨及地下水位之關係」,水土保持學報(中興大學),第35第(1),第47-56頁。 114. 鄭遠、陳美惠、王裕民、李振誥,2003,「地表水與地下水灌區水資源聯合運用之研究:以屏東隘寮圳灌區為例」,農業工程學報,第49卷,第4期,第61 -74頁。 115. 謝壎煌、陳忠偉、葉信富、李振誥,2007,「應用河道水位變化評估新虎尾溪地下水補注量之研究」,農業工程學報,第53卷,第2期,第50-60頁。 116. 簡銘成、杜永昌、汪中和、丁澈士,2011,「應用氫氧穩定同位素分析地下水補注之研究」,農業工程學報,第57卷,第3期,第61 -74頁。 117. 龔文瑞、李振誥、陳尉平、葉信富,2007,「以地下水位變動法結合消退曲線位移法評估地下水補注量」,農業工程學報,第53卷,第3期,第75-87頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61033 | - |
| dc.description.abstract | 臺灣受限於地形因素及降雨型態分佈不均,大部份降雨在極短時間內直接逕流入海無法被有效利用,因此地下水因其成本低廉且取用方便等優點,便成為枯水期或缺乏儲水設施地區之重要水源,如何有效的保育及補注地下水資源已成為一大家重視的議題。濁水溪流域於中上游山區及下游沖積扇頂為良好的地下水補注區,然而目前針對濁水溪山區地下水為研究區域的文獻極少,探究此區域地面水與地下水的關係及建立模式有其必要性。本研究以濁水溪流域的中上游山區及下游沖積扇扇頂為研究區域,首先探究影響地下水位變動之因素,著重於分析水文因子對於地下水位的影響,運用統計方法分析累積雨量對於地下水觀測井水位變動之相關性,並嘗試訂定有效補注地下水之累積雨量門檻值,發現透水性較差的井或深井需要較長累積雨量日數才能有效造成觀測井水位抬升;採用非線性分析工具(Gamma Test, GT)篩選眾多雨量資訊,提供類神經網路之最佳輸入項,本研究以具優越非線性映射能力及高度精確性之倒傳遞類神經網路(BPNN)與具模糊規則庫之調適性網路模糊推論系統(ANFIS)建立推估模式,並以模糊推論系統佐以觀測井之地理、地質資訊做一地下水補注機制的特性分析,歸納出三種類型之水位抬升現象的觀測井,模式成果顯示BPNN與ANFIS都有相當良好的推估的表現;本研究亦推估濁水溪山區地下水平均年有效補注量,其推估值為10.42億噸。本研究探討濁水溪流域之降雨及河川流量和當地水文資訊,進一步掌握地下水變動的關係,以期能夠作為防治地層下陷之重要資訊,並提供濁水溪流域之水資源調配管理一參考依據。 | zh_TW |
| dc.description.abstract | In Taiwan, most of rainfalls go straight into the ocean. Rainfall cannot be utilized efficiently due to topographical limitations and non-uniformly distributed rainfall patterns. Therefore, groundwater has become an important water source during drought periods and/or at the areas short of water storage facilities due to the low-cost and easy accessibility of groundwater. How to preserve and recharge groundwater effectively has become an important issue. The mountainous areas and the proximal-fan areas of the Jhuoshui River basin in Central Taiwan have been considered good groundwater recharge areas. However few researches on the recharge mechanisms in the mountainous areas of the Jhuoshui River basin can be found, therefore it is necessary to investigate the relationship between surface water and groundwater and to construct groundwater models at this area.
This study investigates the interactive mechanisms between surface water and groundwater, and the mountainous areas as well as the proximal-fan areas of the Jhuoshui River basin in Central Taiwan is the study area. This study first investigates the mechanisms that result in the variations of groundwater levels and then focuses on the influence of surface water on groundwater level variations. Statistics methods are adopted to analyze the correlations between cumulative rainfall and groundwater level variation at groundwater monitoring wells, and the effective rainfall thresholds that cause efficient groundwater recharge activities can be identified. The results indicate that it requires accumulated rainfall of several days to make groundwater levels variable at low-permeability wells or deep wells. This study next adopts the Gamma Test (GT) to select the critical input factors to the ANN models. Then both the backpropagation neural network (BPNN) in consideration of its superior nonlinear mapping ability as well as high estimation accuracy and the adaptive network fuzzy inference system (ANFIS) with a fuzzy rule base are used to construct estimation models for groundwater level variations at groundwater monitoring wells. Finally, this study adopts the fuzzy inference system with spatial and geological information of groundwater monitoring wells to analyze the characteristics of groundwater recharge mechanisms and further classifies three kinds of groundwater monitoring wells with a similar mechanism of water level variation for each type. Results indicate that both BPNN and ANFIS estimation models perform well. This study also estimates the average groundwater recharge over the mountainous areas of Jhuoshui River basin, with an estimated annual amount of 1.04 billion of tons. In sum, this study investigates the rainfall and streamflow information in the Jhuoshui River basin, and further links the analytical results to groundwater level variations at groundwater monitoring wells. The results of this study can provide valuable information for the prevention as well as treatment of land subsidence and can be a good reference for water resources management in the Jhuoshui River basin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:42:33Z (GMT). No. of bitstreams: 1 ntu-102-R00622026-1.pdf: 5353499 bytes, checksum: a10902156c51f83b729f9346fe6b643f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 X 第一章 緒論 1 1-1 研究緣起與目的 1 1-2 研究架構 2 第二章 文獻回顧 5 2-1 地面水與地下水位變動關係 5 2-2 推估地下水補注量 8 2-3 類神經網路 12 2-4 模糊推論系統 14 第三章 理論概述 17 3-1 基流資料估計法 17 3-2 相關性分析 18 3-3 Gamma Test (GT) 20 3-4 類神經網路 22 3-4-1 倒傳遞類神經網路 25 3-4-2 模糊推論系統 27 3-4-3 調適性網路模糊推論系統 30 3-5 評估指標 34 第四章 研究案例 36 4-1 研究區域介紹 36 4-2 資料蒐集 41 4-3 水文環境分析 44 第五章 結果與討論 52 5-1 中上游山區地下水年有效補注量 52 5-2 累積雨量補注地下水效益分析 57 5-3 地下水位抬升量推估模式 64 5-3-1 中上游山區 64 5-3-2 沖積扇扇頂區域 68 5-4 補注機制特性分析 72 第六章 結論與建議 79 6-1 結論 79 6-2 建議 81 參考文獻 83 附錄 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地下水位 | zh_TW |
| dc.subject | 補注機制 | zh_TW |
| dc.subject | Gamma Test(GT) | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 模糊推論系統 | zh_TW |
| dc.subject | Groundwater Level | en |
| dc.subject | Gamma Test (GT) | en |
| dc.subject | Artificial Neural Network (ANN) | en |
| dc.subject | Fuzzy Inference System (FIS) | en |
| dc.subject | Recharge Mechanism | en |
| dc.title | 濁水溪流域地下水位抬升機制及補注量之研究 | zh_TW |
| dc.title | Investigating the Mechanisms of Groundwater Level Variation and Recharge at Zhuoshui River Basin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉振宇,張麗秋,黃文政,曾鈞敏 | |
| dc.subject.keyword | 地下水位,補注機制,Gamma Test(GT),類神經網路,模糊推論系統, | zh_TW |
| dc.subject.keyword | Groundwater Level,Recharge Mechanism,Gamma Test (GT),Artificial Neural Network (ANN),Fuzzy Inference System (FIS), | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
