Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61030
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許晃雄(Huang-Hsiung Hsu)
dc.contributor.authorMeng-Syuen Wuen
dc.contributor.author吳孟軒zh_TW
dc.date.accessioned2021-06-16T10:42:22Z-
dc.date.available2013-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation姜禮強,2012:季內震盪與地形之間的交互作用-利用高解析度資料。國立台灣
大學大氣科學研究所碩士論文。
陳冠傑,2010:秋季熱帶氣旋能量之年代際變化探討。國立師範大學地球科學研
究所碩士論文。
Bellenger, H., and Duvel, J. P., 2012: The event-to-event variability of the boreal
winter MJO.
Betts, A. K., 1986: Non-precipitating cumulus convection and its parametrization. Quart. J. R. Met. SOC., 99, 178-196.
Bett, A. K. and Miller, M. J., 1986: A new convective adjustment scheme.
Part 11: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. R. Met. SOC., 112, 693-709.
Biello, J. A. and A. J. Majda, 2005: A new multiscale model for the Madden–Julian
oscillation. J. Atmos. Sci., 62, 1694–1721.
Blade, I. and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 2922–2939.
Brown, Stan, “Measure of shape: skewness and kurtosis”, available at:
http://www.tc3.edu/instruct/sbrown/stat/shape.htm, 2008.
Chao, W. C., 1995: A critique of wave-CISK as an explanation for the 40–50 day tropical intraseasonal oscillation. J. Meteorol. Soc. Japan, 73, 677–684.
Charney, J. G. and A. Eliassen, 1964: On the growth of the hurricane depression. J.
Atmos. Sci., 21, 68–75.
Cramer, Duncan, “Basic stastitics for social research”, Routledge Chapman & Hall, 1997.
Emanuel, K. A., 1987: Air–sea interaction model of intraseasonal oscillations in the
Tropics. J. Atmos. Sci., 44, 2324–2340.
Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between
equatorial convection and local radiative and evaporative processes: The
implication for intraseasonal oscillations. J. Atmos. Sci., 54, 2373–2386.
Fuchs, Z. and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with
radiative–convective instability and WISHE. J. Atmos. Sci., 62, 4084–4094.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462.
Haertel, P. T. and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J.
Atmos. Sci., 61, 2707–2721.
Hendon, H. H. and M. L. Salby, 1994: The life cycle of the Madden–Julian
Oscillation. J. Atmos. Sci., 51, 2225–2237.
Houze, R. A., S. S. Chen, D. K. Kingsmill, Y. Serra, and S. E. Yuter, 2000:
Convection over the Pacific warm pool in relation to the atmospheric Kelvin–
Rossby wave. J. Atmos. Sci., 57, 3058–3089.
Hsu, H. H., 2011: Chapter 3, “Intraseasonal variability of the atmosphere-ocean-climate system: East Asian monsoon”, in William K. M. Lau, and Duane E. Waliser, Intraseasonal Variability in the Atmosphere–Ocean Climate System (Second Edition). Springer, pp. 73-110, 2011.
Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between Boreal Summer
Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western
North Pacific. Part I: Energetics Diagnosis. J. Climate. 24, 927-941.
Hu, Q. and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective
systems. J. Atmos. Sci., 51, 1089–1099.
Hu, Q. and D. A. Randall, 1995) Low-frequency oscillations in radiative–convective
systems, Part II: An idealized model. J. Atmos. Sci., 52, 478–490.
Johnson, R. H., T. M. Rickenbarch, S. A. Rutledge, P. E. Ciesielski, and W. H.
Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2417.
Khouider, B. and A. J. Majda, 2006: A simple multicloud parameterization for
convectively coupled tropical waves, Part I: Linear analysis. J. Atmos. Sci., 63, 1308-1323.
Khouider, B. and A. J. Majda, 2007: A simple multicloud parameterization for
convectively coupled tropical waves, Part II. Nonlinear simulations. J. Atmos.
Sci., 64, 381–400.
Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of
the Madden–Julian Oscillation. J. Atmos. Sci., 62, 2790–2809.
Knutson, T. R., K. M. Weickmann, and J. E. Kutzbach, 1986: Global-scale
intraseasonal oscillations of outgoing longwave radiation and 250mb zonal wind
during northern hemisphere summer. Mon. Wea. Rev., 114, 605–623.
Knutson, T. R., and K. M. Weickmann, 1987: 30–60-day atmospheric oscillation:
Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev.,
115, 1407–1436.
Ko, Ken-Chung, Huang-Hsiung Hsu and Chia Chou, 2012: Propagation and
Maintenance Mechanism of the TC/submonthly Wave Pattern and TC feedback
in the Western North Pacific. J. Climate, 25, 8591-8610.
Krishnamurti, T. N. and D. Subrahmanyam, 1982: The 30–50 day mode at 850mb
during MONEX. J. Atmos. Sci., 39, 2088–2095.
Lau, K. M. and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during
northern winter as inferred from OLR. Mon. Wea. Rev., 113, 1889–1909.
Lau, K. M. and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in
the tropical atmosphere, Part I: Basic theory. J. Atmos. Sci., 44, 950–972.
Lau, K. M., L. Peng, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud
clusters, westerly wind bursts, 30–60 day oscillations and ENSO: A unified view. J. Meteorol. Soc. Japan, 67, 205–219.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolating)
outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
Lin, X. and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the
flow over the western Pacific warm pool during TOGA–COARE. J. Atmos. Sci.,
53, 695–715.
Lindzen, R. S., 1974: Wave–CISK and tropical spectra. J. Atmos. Sci., 31, 1447–
1449.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the
zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.
Madden, R. A. and P. R. Julian, 1972: Description of global-scale circulation cells in
the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Madden, R. A. and P. R. Julian, 1994: Observations of the tropical 40–50 day
oscillation: Review. Mon. Wea. Rev., 122, 814–837.
Madden, R. A. (1986) Seasonal variations of the 40–50 day oscillation in the tropics.
J. Atmos. Sci., 43, 3138–3158.
Majda, A. J. and J. A. Biello, 2004: A multiscale model for tropical intraseasonal
oscillations. Proceedings of the National Academy of Sciences U.S.A., 101,
4736–4741.
Majda, A. J. and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal
oscillations. PNAS, 106, 8417-8422.
Majda, A. J. and S. N. Stechmann, 2009: A simple dynamical model with features of
convective momentum transport. J. Atmos. Sci., 66, 373–392.
Maloney, E. D. and D. L. Hartmann, 1998: Frictional moisture convergence in a
composite life cycle of the Madden–Julian Oscillation. J. Climate, 11, 2387–
2403.
Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life
cycle: Building block or prototype for large scale tropical waves? Dyn. Atmos.
Oceans, 42, 3–29.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc.
Japan, 44, 25-43.
Moncrieff M. W., 2004: Analytic representation of the large-scale organization of
tropical convection. J. Atmos. Sci., 61, 1521–1538.
Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the
western Pacific. J. Meteorol. Soc. Japan, 66, 823–839.
Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and
lowfrequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–
2348.
Neelin, J. D. and J.-Y. Yu, 1994: Modes of tropical variability under convective
adjustment and the Madden–Julian Oscillation, Part I: Analytical theory. J.
Atmos. Sci., 51, 1876–1894.
Ooyama, K., 1964: A dynamic model for the study of tropical cyclone development.
Geofits. Int. (Mexico), 4, 187–198.
Rui, H. and B. Wang, 1990: Development characteristics and dynamic structure of
tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357–379.
Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull.
Amer. Meteor. Soc., 91, 1015-1057.
Sikka, D. R. and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over
Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–
1853.
Straub, K. H. and G. N. Kiladis, 2003: Interactions between the boreal summer
intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea.
Rev., 131, 945–960.
Wang, B., 1988a: Dynamics of tropical low-frequency waves: An analysis of the
moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065. (FCI)
Wang, B., 1988b: Comments on ‘‘An air–sea interaction model of intraseasonal
oscillation in the tropics.’’ J. Atmos. Sci., 45, 3521–3525. (WISHE)
Wang, B. and X. Xie, 1998: Coupled modes of the warm pool climate system, Part I:
The role of air–sea interaction in maintaining Madden–Julian Oscillation. J.
Atmos. Sci., 11, 2116–2135.
Wang, B. and H. Rui, 1990a: Dynamics of the coupled moist Kelvin–Rossby wave on
an equatorial beta-plane. J. Atmos. Sci., 47, 397–413.
Wang, B., 2011: Chapter 12, “Theories” , in William K. M. Lau, and Duane E. Waliser, Intraseasonal Variability in the Atmosphere–Ocean Climate System (Second Edition). Springer, pp. 335-398, 2011.
Wang, B. and F. Liu, 2011: A model for scale interaction in the Madden–Julian
Oscillation. J. Atmos. Sci. (accepted).
Wheeler, M. C., and Hendon, H. H., 2004: An all-season real-time multivariate MJO
index: Development of an index for monitoring and prediction. Mon. Weath.
Rev., 132, 1917-1932.
Wright, D. B., and J. A. Herrington, 2011: Problematic standard errors and confidence
intervals for skewness and kurtosis. Behav. Res., 43, 8-17.
Xie, S.-P. and A. Kubokawa, 1990: On the wave-CISK in the presence of a frictional
boundary layer. J. Meteorol. Soc. Japan, 68, 651–657.
Yano, J.-I. and K. Emanuel, 1991: An improved model of the equatorial troposphere
and its coupling with the stratosphere. J. Atmos. Sci., 48, 377–389.
Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere
summer monsoon. J. Meteorol. Soc. Japan, 57, 227–242.
Yasunari, T., 1980: A quasi-stationary appearance of 30–40 day period in the
cloudiness fluctuations during the summer monsoon over India. J. Meteorol. Soc.
Japan, 58, 225–229.
Zhu, B. and B. Wang, 1993: The 30–60 day convection seesaw between the tropical
Indian and western Pacific Oceans. J. Atmos. Sci., 50, 184–199.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61030-
dc.description.abstract季內震盪(Madden-Julian Oscillation, MJO)內的多重尺度交互作用為了解MJO的關鍵之一。目前多數該現象之研究皆透過在模式中放入MJO與高頻波動間之動力、熱力效果,來模擬觀測上MJO所具有之特性。
本分析利用MJO指數為標準求出三個北半球冬季之強MJO個案,透過低頻渦流動能方程討論三個案MJO與高頻系統間能量的傳送。此低頻渦流動能方程將原始場拆解為三個波段,由低頻與高頻尺度分別代表MJO與中尺度-綜觀尺度系統的時間尺度,其交互作用即為多重尺度交互作用(multiscale interaction, MI)。1985、1993與2008冬季之三個案皆有典型MJO緯向環流低層輻合、高層輻散之特徵,惟高層對流區之東側低頻西風較為不明顯。MI之機率密度分析顯示,不論在高低層,高頻緯向風輻合將造成低頻流場動能之增加,輻散則造成低頻流場動能減少。MJO對流區內高頻風場較活躍,不論高低層,MJO對流區亦為MI較強烈之區域。在低層,低頻強西風內之MI作用較東風區內顯著;高層亦為強西風區內MI作用較顯著。而不論高低層之西風區或東風區,靠近MJO對流複合體之一側MI均較顯著。前述MI較強之區域,平均上亦為低頻流場損失動能較迅速之區域,因此對流區低層西側與高層東側低頻流場損失動能之速率也較高。經過長期平均之MI,顯示低頻風場通常不斷損失動能至高頻,但中高層在個案間差異大,單一個案之平均可能出現中高層之低頻流場大量增加動能之現象。此外,低層長期平均之MI在海洋大陸以西訊號較強,而高層則在西太平洋比較顯著,可能與長期之高頻波動活動趨勢有關。
上述結果表示高頻波動與MJO、背景風場間的相對位置,都會影響MI。且長期平均後,反應出MJO之MI主要作用之區域。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T10:42:22Z (GMT). No. of bitstreams: 1
ntu-102-R00229016-1.pdf: 15978896 bytes, checksum: c02b2800795e4eda7cc56a5b50ee6dd6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書
誌謝 I
摘要 II
Abstract III
目錄 V
圖表說明 VII
第一章 前言 13
1.1 MJO的基本特徵介紹 13
1.2 MJO的內部動力的重要理論 15
1.2.1 波動-第二類條件不穩定(Wave-CISK) 16
1.2.2 風引發之表面熱交換(WISHE)或風-蒸發回饋 16
1.2.3 摩擦輻合不穩定(Frictional convergence instability, FCI) 17
1.2.4 雲-輻射回饋(Cloud-radiation feedback) 18
1.2.5 對流-水氣回饋(Convection-water vapor feedback) 18
1.2.6 多重尺度交互作用理論(Multiscale interaction theory) 19
1.3 研究動機與論文架構 20
第二章 資料與分析方法 22
2.1 使用資料簡介 22
2.2 分析方法與資料處理 22
2.2.1 MJO Real-time Multivariate MJO Index (RMM Index) 23
2.2.2 低頻擾動渦流動能方程 24
2.2.3 常態性檢定與偏度、峰度之顯著性檢定 27
第三章 個案基本流場介紹 29
3.1 低頻流場的垂直結構 30
3.2 低層的背景流場與低頻流場 30
3.3 高層的背景流場與低頻流場 31
3.4小結 32
第四章 多重尺度交互作用之個案分析 33
4.1 低層MI的時間序列分析 33
4.2 高層MI的時間序列分析 36
4.3 季內尺度對流區與非對流區內的MI分析 37
4.4 低頻風場內的MI分析 39
4.5 長期平均的高低頻能量轉換 41
第五章 討論與總結 44
參考文獻 48
附圖 55
dc.language.isozh-TW
dc.subject渦流動能方程zh_TW
dc.subject多重尺度交互作用zh_TW
dc.subject季內震盪zh_TW
dc.subjectMadden-Julian Oscillationen
dc.subjectmultiscale interactionen
dc.subjecteddy kinetic energyen
dc.title季內震盪中的多重尺度交互作用zh_TW
dc.titleMultiscale Interactions in the Madden-Julian Oscillationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor鄒治華(Chi-Hua Tsou)
dc.contributor.oralexamcommittee陳維婷(Wei-Ting Chen),柯亙重(Ken-Chung Ko)
dc.subject.keyword季內震盪,多重尺度交互作用,渦流動能方程,zh_TW
dc.subject.keywordMadden-Julian Oscillation,multiscale interaction,eddy kinetic energy,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
15.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved