Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-Jihn Chang)
dc.contributor.authorYu-Hsuan Tsaien
dc.contributor.author蔡宇軒zh_TW
dc.date.accessioned2021-06-16T10:41:38Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citationAgalbjorn S, Koncar N, Jones A.J. (1997) A note on the gamma test, Neural Comput. Appl., 5 131-133.
Ahmad, S., Simonovic, S.P. (2005) An artificial neural network model for generating hydrograph from hydro-meteorological parameters. Journal of Hydrology 315 (1–4), 236–251.
Almasri, M.N., Kaluarachchi, J.J. (2005) Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modeling and Software 20 (7), 851–871.
Antar M.A., Elassiouti I, Allam M.N. (2006) Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study, Hydrological Processes 20, 1201-1216.
ASCE Task Committee, (2000) Artificial neural networks in hydrology II: hydrologic applications. Journal of Hydrologic Engineering 5 (2), 124–137.
Assaad M, Bone R, Cardot H (2005) Study of the Behavior of a New Boosting Algorithm for Recurrent Neural Networks Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, Lecture Notes in Computer Science:169-174.
A. Moghaddamnia, M. Ghafari Gousheh, J. Piri, S. Amin, D. Han (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques, Advances in Water Resources 32, 88–97.
Chang, C.K. (2005) Pollution Source Survey and Prevention Program Assess for the Ta-Han River Basin, A Thesis submitted to Graduate Institute of Environmental Engineering, National Taiwan University.
Chang, C.L., Liao, C.S., Lo, S.L., Hu, C.Y., Ma, J.L. (2011) The Correlation Analysis of Taiwan's Main Water Treatment Plants between Upstream of the Water Turbidity and Hydrological Characteristics, Journal of Taiwan Agricultural Engineering Vol. 57, No. 2, June 2011.
Chang, F.J., Chang, K.Y., Chang, L.C. (2008) Counterpropagation fuzzy-neural network for city flood control system. Journal of Hydrology 358, 24-34.
Chang, F.J., Chiang, Y.M., Chang, L.C. (2007) Multi-step-ahead neural networks for flood forecasting. Hydrological Sciences Journal 52(1), 114-130.
Chang, F.J., Kao, L.S., Kuo, Y.M., Liu, C.W., (2010) Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan, Journal of Hydrology 388 ,65–76.
Chang, F.J. and Kuo, Y.M. (2009) Dynamic factor analysis for estimating ground water arsenic trends, Journal of Environmental Quality, Dec 30;39(1):176-84.
Chang, F. J., Tsai, W. P., Chen, H. K., Yam, R. S. W., & Herricks, E. E. (2012). A self-organizing radial basis network for estimating riverine fish diversity. Journal of Hydrology.
Chang L.C., Chang, F.J., Hsu H.C. (2010) Real-Time Reservoir Operation for Flood Control Using Artificial Intelligent Techniques. International Journal of Nonlinear Sciences and Numerical Simulation 11(11), 887-902
Chang L.C., Chen P.A., Chang F.J. (2012) A Reinforced Two-Step-Ahead Weight Adjustment Technique for On-Line Training of Recurrent Neural Networks, IEEE Trans Neural Network and Learning Systems 23(8): 1269-1278.
Chaves, P, Toshiharu, K (2007) Conceptual fuzzy neural network model for water quality simulation. Hydrological Processes 21(5), 634-646.
Chen S, Billings S.A., Grant P.M. (1990) Nonlinear system identification using neural networks, Int. J. Control 11 (6) ,1191-1214.
Chen, Y.H. (2011) Constructing the suspended sediment concentration model in Shihmen Reservoir watershed by artificial neural networks, A Thesis Submitted to Graduate Institute of Bioenvironmental Systems Engineering, National Taiwan University.
Chiang Y.M., Chang L.C., Tsai M.J., Wang Y.F., Chang F.J., (2010) Dynamic Neural Networks for Real-Time Water Level Predictions of Sewerage Systems-covering gauged and unguaged sites, Hydrol. Earth Syst. Sci. 14, 1309-1319.
Chiu, H.H., (2011) The Study of water quality of the Da-Han stream and Danshuei Estuary, A Thesis submitted to Department of Marine Environmental Informatics College of Engineering Science and Resource, National Taiwan Ocean University.
Chuang, C.H. (2007) Temporal and spatial variability of alkalinity pH and major ions in the Danshuei River Watershed, A Thesis submitted to Graduate Institute of Hydrological & Oceanic Sciences, National Central University.
Cobaner, M., Unal B., Kisi O., (2009) Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol, 367:52-61.
Heathwaite, A. L., Burt, T. P., Trudgill, S. T., & Thornes, J. B. (1990). The effect of land use on nitrogen, phosphorus and suspended sediment delivery to streams in a small catchment in southwest England. Vegetation and erosion. Processes and environments., 161-177.
Heathwaite, A. L., Johnes, P. J., & Peters, N. E. (1996). Trends in nutrients. Hydrological Processes, 10(2), 263-293.
Heathwaite, A. L., & Johnes, P. J. (1996). Contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments. Hydrological processes, 10(7), 971-983.
Jang, J.S.R. (1993) ANFIS - Adaptive network-based fuzzy inference system, Ieee Transactions on Systems Man and Cybernetics, 23:665-685.
Jiang, D.X. (2010) Identification of the water pollution sources through analysis of water quality monitoring data of Tamsui and Kao-Ping River Basin. A Thesis Submitted to Department of Applied Mathematics, National Sun Yat-sen University.
Jingsheng, C., Xuemin, G., Dawei, H., & Xinghui, X. (2000). Nitrogen contamination in the Yangtze River system, China. Journal of hazardous materials, 73(2), 107-113.
Johnes, P., Moss, B., & Phillips, G. (1996). The determination of total nitrogen and total phosphorus concentrations in freshwaters from land use, stock headage and population data: testing of a model for use in conservation and water quality management. Freshwater Biology, 36(2), 451-473.
Kisi, O. (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 50, 683-696.
Kisi, O., Karahan, M.E., Sen Z., (2006) River suspended sediment modelling using a fuzzy logic approach. Hydrological Processes, 20:4351-4362.
Ko, C. H., Chang, F. C., Lee, T. M., Chen, P. Y., Chen, H. H., Hsieh, H. L., & Guan, C. Y. (2010). Impact of flood damage on pollutant removal efficiencies of a subtropical urban constructed wetland. Science of the Total Environment, 408(20), 4328-4333.
Koncar N, (1997) Optimisation methodologies for direct inverse neurocontrol. PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London.
Krishna B., Rao Y.R.S., Vijaya T. (2008) Modeling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes 22, 1180-1188.
Kuo, Y.M., Liu, C.W., Lin, K.H., 2004. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Research 38 (1), 148–158.
Lai, J.S., Lee, F.Z., Hsieh, H.M., Tan, Y.C. (2009) Impact of Downstream River during Sediment flushing Operation in the Wushe Reservoir, full paper of the conference of Taiwan Agricultural Engineers Society, 2009.
Lai, J.S., Lee, F.Z., Guo, W.D., Huang, C.C., Chang, F.J. (2009) Impact of Downstream River during Sediment flushing Operation in the Wushe Reservoir, full paper of the conference of Taiwan Agricultural Engineers Society, 2009.
Lal, H. (2011) Introduction to Water Quality Index. National Water Quality and Quantity Team, USDA/NRCS-WNTSC, Portland, OR (under preparation)
Lan, C.Y. (2012) Distribution of nutrients and dissolved oxygen in the Danshuei River and one dimensional advection-diffusion-reaction model simulation, A Thesis submitted to Graduate Institute of Hydrological & Oceanic Sciences, National Central University.
Lin, C.H. (2012) Artificial Neural Networks for Assessing Arsenic Concentrations and Characteristics of Groundwater Quality in the Coastal Area of Yun-Lin, Taiwan, A Thesis Submitted to Graduate Institute of Bioenvironmental Systems Engineering, National Taiwan University.
Lin, S.P. (2006) Application of Principal Components Analysis and Artifical Neural Networks on Quality Prediction of Effluent in Wastewater Treatment Plant, A Thesis Submitted to Department of Resource and Environment Management on Graduate Studies, Leader University.
Lin T, Horne B.G., Tino P, Giles C.L. (1996) Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans., Neural Networks 7 (6) ,1424-1438.
Liou, S., Lo, S., Wang S., (2004) A generalized water quality index for Taiwan. Environ. Monitor. Assess. 96, 35-52.
Ma Q.L., Zheng Q.L., Peng, H, Zhong T.W., Qin, J.W. (2008) Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chinese Physics B 17(2), 536.
Marco Colasanti. (2011) Aquarium Chemistry: The Nitrogen Cycle: New Developments and New Prospects. New Developments and New Prospects, The Nitrogen Cycle, Aquarium Chemistry, Advanced Aquarist, April 2011.
McNamara, J.P., Kane, D.L., Hobbie, J.E., Kling, G.W. (2008) Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River arctic Alaska. Hydrological Processes 22, 3294-3309.
Menezes Jr J.M.P., Barreto G.A. (2008) Long-term time series prediction with the NARX network: An empirical evaluation, Neurocomputing 71(16-18), 3335-3343.
Moghaddamnia A, Ghafari M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources 32, 88-97.
Moghaddamnia A, Ghafari M, Piri J, Han D (2008) Evaporation estimation using support vector machines technique. World Academy of Science, Egineering and Technology 43, 14-22.
Nikolos, I.K., Stergiadi, M., Papadopoulou, M.P., Karatzas, G.P. (2008) Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design, Hydrological Processes 22, 3337-3348
Noori R., Karbassi A., Sabahi M.S. (2010) Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction, Journal of Environmental Management 91(3), 767–771.
Noori R, Hoshyaripour G, Ashrafi K, Araabi B.N. (2010) Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration, Atmospheric Environment 44(4), 476–482.
Noori R., Karbassi A, Moghaddamnia A, Han D, Zokaei-Ashtiani M.H., Farokhnia A, Gousheh M.G. (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology 401, 177-189.
Ouyang, C.H. (2010) Graduate Institute of Environmental Engineering, National Central University.
Said, A., Stevens, D., Selke, G., (2004) An innovative index for water quality in streams, Environ. Manage 34, 406-414.
Serpen G, Xu Y (2003) Simultaneous recurrent neural network trained with non-recurrent backpropagation algorithm for static optimization, Neural Computing & Applications 12: 1-9. DOI 10.1007/s00521-003-0365-0.
Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—a case study. Ecological Modelling, 220(6), 888-895.
Su H.T., McAvoy T.J. (1991) Identification of chemical processes using recurrent networks, in Proc. Amer. Contr. Conf. 3, 2314-2319.
Su H.T., McAvoy T.J., Werbos P (1992) Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach, Ind. Eng. Chem. Res. 31, 1338-1352.
Tayfur, G., Ozdemir S., Singh V.P., (2003) Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces, Advances in Water Resources. 26, 1249-1256.
Teegavarapu, R.S.V., Chandramouli, V. (2005) Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology 312, 191–206.
Turan, M.E., Yurdusev, M.A. (2009) River flow estimation from upstream flow records by artificial intelligence methods. Journal of Hydrology 369, 71–77.
Wang Y.M., Chang J.X., Huang Q (2010) Simulation with RBF Neural Network Model for Reservoir Operation Rules. Water Resources Management 24(11), 2597-2610.
Yang, C.P., Lung, W.S., Liu, J.H., Hsiao, W.P. (2009) Establishment and Application of Water Quality Model of Hypoxic Stream, Journal of Taiwan Agricultural Engineering Vol.55, No. 1, March 2009.
Yang, H.C., Chang, F.J. (2005) Modeling the combined open channel flow by artificial neural network. Hydrological Processes 19, 3747–3762.
Yesilnacar, M.I., Sahinkaya, E., Naz, M., Ozkaya, B. (2008) Neural network prediction of nitrate in groundwater of Harran Plain Turkey, Environmental Geology 56, 19–25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61017-
dc.description.abstract大漢溪流域下游流經桃園、新北市區河段,過多的汙水排放造成水質迅速惡化,然而台灣山勢陡峻,降雨量分佈不均,加上特有的颱風暴雨等季節性氣候特徵,驟降的雨量導致河川水文環境變化劇烈,使得受汙染的河水中各水質因子變動幅度極大,此現象易造成河川生態衝擊。穩定河川水質變化程度一直是環境保育的重要課題之一,因此,本研究藉由探討各河川水質因子之環境特性,尋找此地區最具代表性之水質因子,並藉由廣泛領域可能之影響因素建立其推估模式,進而透過控制河川流量與制定水質目標達到控管水質的目的。

本研究針對石門水庫大壩下游大漢溪流域數個水質測站,探討各水質因子之相互關係和空間分佈特性,以及水質因子與雨量和放流量間之相關性,分析結果推論氨氮為眾多河川水質因子中重要且易被放流量控制之關鍵因子。隨後利用Gamma Test統計分析,從不同環境領域中萃取出影響河川氨氮之代表性因子組合,以多種類神經網路尋找最合適之推估模式,結果顯示具有輸出層回饋項的非線性自回歸類神經網路(NARX),針對河川氨氮之推估結果最佳。在水質控管部分,利用訓練好之NARX網路搭配連續方程式與邊界條件建立控制模式,求取鳶山堰在不影響正常操作下,使氨氮低於設定之水質標準之最佳放流操作,提供給上游石門水庫在汛期與非汛期的放流參考。結果顯示透過此程序,在25%和50%削減量下,皆可以有效降低河川中氨氮之濃度與變異程度,達成穩定河川水質指標的目的,維持整體河域的生態穩定性。
zh_TW
dc.description.abstractWater quality stabilization in rivers is an important task to preserve the health of ecosystems. The water quality of the Dahan River (the upstream of the Danshuei River) in Taiwan has degraded rapidly due to heavy pollutants transported from cities and their surrounding urban areas. Moreover, Taiwan endures contrasting seasonal variations in river flow and water quality because of the short duration and severe intensity of storms and typhoons that attack Taiwan. Sudden changes in river flow may easily result in serious deteriorations in water quality and huge impacts on ecosystems. Therefore, this study attempts to identify the crucial water quality variable of the Dahan River and establish its concentration estimation model by incorporating relevant factors from various fields. Consequently river water quality management can be conducted by controlling the discharge of the upstream dam of the Dahan River.
In this study, correlation coefficient analyses discover the characteristics and spatial distributions of various water quality parameters. The results reveal that ammonia nitrogen (NH3-N) is the crucial variable in judging the contamination level over the study area and NH3-N can be easily influenced by discharge and rainfall. The Gamma test, a statistical analysis method, is used to extract the most relevant factors from various NH3-N-related environmental fields, and thus the most sensitive combination of factors determined is used as inputs to different artificial neural networks (ANNs) for constructing the estimation model of NH3-N concentration. The results show that the NARX network calibrated by the cross validation method adequately utilizes the information of model outputs through recurrent connections to the network itself for estimating NH3-N concentration within shorter time interval without conducting field sampling. For water quality stabilization, this study collaborates the constructed NARX network with mass balance equations and boundary conditions to obtain outstanding results in reducing NH3-N concentration below current water quality goals (i.e., 25% and 50% decreases in concentration). Subject to the regular operation and water demands of the Yuanshan Weir, both 25% and 50% decrease operations can significantly level down NH3-N concentrations with smaller variances, and thus effectively maintain stable water quality in the Dahan River. The results can provide useful information for reservoir operation managers to sustain acceptable water quality throughout different seasons.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:41:38Z (GMT). No. of bitstreams: 1
ntu-102-R00622032-1.pdf: 5430819 bytes, checksum: d7a5ecf69248b576b5b679f0418ac01e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌
Abstract III
摘要 V
Contents VI
List of Figures IX
List of Tables XII
1. Introduction 1
1.1 Motivation 1
1.2 Research objectives 1
1.3 Thesis layout 4
2. Literature review 5
2.1 Water quality in the Dahan River 5
2.2 Crucial factors affecting water quality 7
2.3 Application of artificial neural networks (ANNs) 8
3. Methodology 10
3.1 Correlation Analysis 10
3.2 Gamma Test (GT) 10
3.3 Artificial Neural Networks (ANNs) 12
3.3.1 Nonlinear Autoregressive with eXogenous input network (NARX) 12
3.3.2 Recurrent Neural Network (RNN) 14
3.3.3 Back Propagation Neural Network (BPNN) 15
3.3.4 Adapted Network-Based Fuzzy Inference System (ANFIS) 16
3.4 Cross validation 17
4. Case study 19
4.1 Study area 19
4.3 Data Collection 23
4.3.1 Water quality data 23
4.3.2 Discharge data 26
4.3.3 Rainfall data 28
4.4 Model construction 29
4.5 Evaluation criteria of model performance 35
5. Results and discussion 37
5.1 Correlation analysis 37
5.1.1 Correlations between water quality parameters 37
5.1.2 Correlations between the reservoir and river channel 41
5.1.3 Correlation between water quality gauge stations 45
5.1.4 Correlation between rainfall and water quality parameters 48
5.1.5 Correlation between discharge and water quality parameters 50
5.2 Determination of target water quality variable - NH3-N 54
5.3 Construction of the estimation model 62
5.3.1 Determination of water quality factors by the GT 62
5.3.2 Regional estimation of NH3-N concentration by ANNs 70
5.3.3 Reconstructing the time series of NH3-N concentration 78
5.4 Water quality control 80
5.4.1 Optimal discharge searched by the control model 80
5.4.2 Regression analysis of water quality parameters relevant to NH3-N 87
5.4.3 Regression analysis of averaged NH3-N concentration and the NH3-N concentration at each single station 91
6. Conclusion and Suggestion 94
6.1 Conclusion 94
6.2 Suggestion 97
7. References 100
Appendix 109
A. Introduction of water quality parameters 109
B. The current test methods of water monitoring procedures (TWEPA) 115
C. Time series of water quality variables in the Dahan River 117
dc.language.isoen
dc.subjectGamma 檢定zh_TW
dc.subject水質zh_TW
dc.subject河道管理zh_TW
dc.subject氨氮zh_TW
dc.subject非線性自回歸類神經網路zh_TW
dc.subjectAmmonia nitrogen (NH3-N)en
dc.subjectWater qualityen
dc.subjectRiver basin managementen
dc.subjectGamma test (GT)en
dc.subjectNARX neural networken
dc.title建立河川水質之推估模式與最佳水質控制策略zh_TW
dc.titleConstructing an Estimation Model and the Optimal Control Strategy on Water Quality in Urban River Basinen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗秋,張國強,劉振宇,陳永祥
dc.subject.keyword水質,河道管理,氨氮,非線性自回歸類神經網路,Gamma 檢定,zh_TW
dc.subject.keywordWater quality,River basin management,Ammonia nitrogen (NH3-N),NARX neural network,Gamma test (GT),en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved