請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6099
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東(Tien-Tung Chung) | |
dc.contributor.author | Jia-Pei Wang | en |
dc.contributor.author | 王嘉霈 | zh_TW |
dc.date.accessioned | 2021-05-16T16:20:52Z | - |
dc.date.available | 2013-08-06 | |
dc.date.available | 2021-05-16T16:20:52Z | - |
dc.date.copyright | 2013-08-06 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-01 | |
dc.identifier.citation | [1] Bakhtiary, N., Allinger, P., Friedrich, M., Mulfinger, F., Sauter, J., Mueller, O., & Puchinger, M. (1996). A new approach for sizing, shape and topology optimization. SAE transactions, 105, 745-761.
[2] Haftka, R. T., & Grandhi, R. V. (1986). Structural shape optimization—a survey. Computer Methods in Applied Mechanics and Engineering, 57(1), 91-106. [3] Mitchell, A. G. M. (1904). The limits of economy of material in framed structures. Philosophical Magazine, Series 6, 8(47), 589-597. [4] Schmit, L. A. (1960). Structural design by systematic synthesis. In Proceedings of the Second ASCE Conference on Electronic Computation, 105-122. [5] Kirsch, U. (1989). Optimal topologies of truss structures. Computer Methods in Applied Mechanics and Engineering, 72(1), 15-28. [6] Bendsoe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197-224. [7] Mlejnek, H. P. (1993). Some explorations in the genesis of structures. In Topology design of structures (pp. 287-300). Springer Netherlands. [8] Bendsoe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193-202. [9] Zhou, M., & Rozvany, G. I. N. (1991). The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1), 309-336. [10] Mattheck, C., & Burkhardt, S. (1990). A new method of structural shape optimization based on biological growth. International Journal of Fatigue, 12(3), 185-190. [11] Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics, 25(12), 1425-1441. [12] Chapman, C. D., Saitou, K., & Jakiela, M. J. (1994). Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116, 1005. [13] Jakiela, M. J., Chapman, C. D., Duda, J., Adewuya, A., & Saitou, K. (2000). Continuum structural topology design with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 339-356. [14] Liu, X., Yi, W. J., Li, Q. S., & Shen, P. S. (2008). Genetic evolutionary structural optimization. Journal of Constructional Steel Research, 64(3), 305-311. [15] Kaveh, A., Hassani, B., Shojaee, S., & Tavakkoli, S. M. (2008). Structural topology optimization using ant colony methodology. Engineering Structures,30(9), 2559-2565. [16] Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & structures, 49(5), 885-896. [17] Querin, O. M., Steven, G. P., & Xie, Y. M. (1998). Evolutionary structural optimization (ESO) using a bidirectional algorithm. Engineering Computations, 15(8), 1031-1048. [18] Haber, R. B., Jog, C. S., & Bendsoe, M. P. (1996). A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization, 11(1-2), 1-12. [19] Petersson, J., & Sigmund, O. (1998). Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 41(8), 1417-1434. [20] Sigmund, O. (1994). Design of material structures using topology optimization (Doctoral dissertation, Technical University of Denmark). [21] Huang, X., & Xie, Y. M. (2007). Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design, 43(14), 1039-1049. [22] Zhou, M., Fleury, R., Shyy, Y. K., Thomas, H., & Brennan, J. M. (2002, September). Progress in topology optimization with manufacturing constraints. In Proceedings of the 9th AIAA MDO conference AIAA-2002-4901. [23] Schramm, U., & Zhou, M. (2006, January). Recent developments in the commercial implementation of topology optimization. In IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (239-248). Springer Netherlands. [24] Chu, D. N., Xie, Y. M., Hira, A., & Steven, G. P. (1996). Evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 21(4), 239-251. [25] Xie, Y. M., & Steven, G. P. (1996). Evolutionary structural optimization for dynamic problems. Computers & Structures, 58(6), 1067-1073. [26] Li, Q., Steven, G. P., Querin, O. M., & Xie, Y. M. (1999). Shape and topology design for heat conduction by evolutionary structural optimization. International Journal of Heat and Mass Transfer, 42(17), 3361-3371. [27] Xie, Y. M., & Steven, G. P. (1994). A simple approach to structural frequency optimization. Computers & structures, 53(6), 1487-1491. [28] Hinton, E., & Sienz, J. (1995). Fully stressed topological design of structures using an evolutionary procedure. Engineering computations, 12(3), 229-244. [29] Tanskanen, P. (2002). The evolutionary structural optimization method: theoretical aspects. Computer methods in applied mechanics and engineering, 191(47), 5485-5498. [30] Rozvany, G. I. N. (2001). Stress ratio and compliance based methods in topology optimization–a critical review. Structural and Multidisciplinary Optimization, 21(2), 109-119. [31] Zhou, M., & Rozvany, G. I. N. (2001). On the validity of ESO type methods in topology optimization. Structural and Multidisciplinary Optimization, 21(1), 80-83. [32] Edwards, C. S., Kim, H. A., & Budd, C. J. (2007). An evaluative study on ESO and SIMP for optimising a cantilever tie—beam. Structural and Multidisciplinary Optimization, 34(5), 403-414. [33] Huang, X., & Xie, Y. M. (2008). A new look at ESO and BESO optimization methods. Structural and Multidisciplinary Optimization, 35(1), 89-92. [34] Rozvany, G. I. N., & Querin, O. M. (2001). Present limitations and possible improvements of SERA (Sequential Element Rejections and Admissions) methods in topology optimization. Proceedings of WCSMO, 4. [35] Sigmund, O., & Petersson, J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization, 16(1), 68-75. [36] Chu, D. N., Xie, Y. M., Hira, A., & Steven, G. P. (1997). On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 24(4), 197-212. [37] Querin, O. M., Steven, G. P., & Xie, Y. M. (2000). Evolutionary structural optimisation using an additive algorithm. Finite elements in Analysis and Design, 34(3), 291-308. [38] Rozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217-237. [39] Huang, X., Xie, Y. M., & Burry, M. C. (2006). A new algorithm for bi-directional evolutionary structural optimization. JSME International Journal Series C, 49(4), 1091-1099. [40] Jog, C. S., & Haber, R. B. (1996). Stability of finite element models for distributed-parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering, 130(3), 203-226. [41] Diaz, A., & Sigmund, O. (1995). Checkerboard patterns in layout optimization. Structural optimization, 10(1), 40-45. [42] Li, Q., Steven, G. P., & Xie, Y. M. (2001). A simple checkerboard suppression algorithm for evolutionary structural optimization. Structural and Multidisciplinary Optimization, 22(3), 230-239. [43] Zhou, M., Shyy, Y. K., & Thomas, H. L. (2001). Checkerboard and minimum member size control in topology optimization. Structural and Multidisciplinary Optimization, 21(2), 152-158 [44] Yang, X. Y., Xie, Y. M., Liu, J. S., Parks, G. T., & Clarkson, P. J. (2002). Perimeter control in the bidirectional evolutionary optimization method. Structural and Multidisciplinary Optimization, 24(6), 430-440. [45] Guest, J. K., Prevost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238-254. [46] Huang, X., & Xie, Y. M. (2010). A further review of ESO type methods for topology optimization. Structural and Multidisciplinary Optimization, 41(5), 671-683. [47] Ansola, R., Canales, J., & Tarrago, J. A. (2006). An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite elements in analysis and design, 42(14), 1220-1230. [48] Xie, Y. M., Zuo, Z. H., Huang, X., Tang, J. W., Zhao, B., & Felicetti, P. (2011). Architecture and urban design through evolutionary structural optimisation algorithms. In Keynote Lecture of International Symposium on Algorithmic Design for Architecture and Urban Design, Tokyo, Japan. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6099 | - |
dc.description.abstract | 本文針對演化率相依問題與加工限制,修正篩選機制與元素增減準則,提出修正式結構最佳化雙向演進法。修正式篩選機制隨著演化過程逐漸縮小篩選半徑,而非選用固定長度的篩選半徑。此修正有助於抑制演化率相依問題,進而提升結構最佳化雙向演進法之穩定性。另一方面,由所需的加工方式而決定的拉拔方向限制,可藉由修正元素增減準則來實現。修正式元素增減準則從拉拔方向的表面往設計區域的內部逐漸移除元素。有拉拔方向限制的最佳設計可避免出現中空或封閉孔洞等難以加工的幾何形狀,因此提升結構最佳化雙向演進法的實用性。本文整合修正式結構最佳化雙向演進法與有限元素分析軟體,發展出一套結構拓樸最佳化軟體。其結果驗證本文所提出的修正方法在結構拓璞最佳化中之可行性及實用性。 | zh_TW |
dc.description.abstract | This thesis proposes a modified bi-directional evolutionary structural optimization (BESO) method which combines a modified filter scheme and a modified element removal/addition criterion for evolution ratio dependence problem and manufacturing constraints. Instead of selecting a fixed length of filter radius, the modified filter scheme decreases the length of filter radius through the evolution process. Such modification contributes to the suppression of evolution ratio dependence problem, and therefore enhances the stability of BESO method. On the other hand, draw direction constraints, defined by required manufacturing process, are achieved by modifying the element removal/addition criterion. Modified element removal/addition criterion gradually removes elements from top surface of the draw direction to the inner design domain. The optimal designs with draw direction constraints are free from hollow or closed cavity geometries which are infeasible for manufacturing, and therefore the practicability of BESO method is enhanced. A structural topology optimization program which combines the proposed modified BESO method and ANSYS is developed. The results prove the validity and practicability of the proposed modifications in structural topology optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:20:52Z (GMT). No. of bitstreams: 1 ntu-102-R00522623-1.pdf: 6711134 bytes, checksum: 06ddd266b4f14fa619dd7dcf5343eb67 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 III ABSTRACT IV CONTENTS V LIST OF FIGURES IX LIST OF TABLES XIV LIST OF SYMBOLS XVI Chapter 1 Introduction 1 1.1 Introduction of Structural Topology Optimization 1 1.2 Paper Review 3 1.3 Motivation 7 1.4 Thesis Outline 8 Chapter 2 Theoretical Review 10 2.1 Evolutionary Structural Optimization (ESO) Method 10 2.1.1 ESO method based on stress level 10 2.1.2 ESO method for stiffness optimization problem 11 2.1.3 Discussion of ESO method 14 2.2 Bi-Directional Evolutionary Structural Optimization (BESO) Method 17 2.2.1 Concept of BESO method 17 2.2.2 Discussion of BESO method 18 2.3 Checkerboard and Mesh Dependence Problem 19 2.3.1 Checkerboard pattern 20 2.3.2 Mesh dependence problem 22 2.4 Mesh-Independency Filter Integrated into BESO Method 24 2.4.1 Sensitivity calculation 25 2.4.2 Element removal/addition and convergence criterion 27 2.5 Numerical Examples of Mesh-Independency Filter Integrated into BESO Method 29 2.5.1 Example: mesh independent solutions 29 2.5.2 Example: member size control 31 Chapter 3 Modified Bi-Directional Evolutionary Structural Optimization Method 33 3.1 Modified Filter Scheme for Evolution Ratio Dependence Problem 33 3.1.1 Example: BESO method with different evolution ratios 34 3.1.2 Modified filter scheme 39 3.2 Modified Element Removal/Addition Criterion for Draw Direction Constraints 40 3.2.1 Introduction of draw direction constraints in topology optimization 40 3.2.2 Modified element removal/addition criterion 41 3.3 Numerical Implementation of BESO Program 46 Chapter 4 Numerical Examples of Modified Filter Scheme 51 4.1 Short Cantilever Beam 51 4.2 Long Cantilever Beam 55 4.3 MBB beam 59 Chapter 5 Numerical Examples of Modified Element Removal/Addition Criterion 65 5.1 3D Arch Structure under Self-Weight Loading 65 5.2 3D Beam under Torsion Load 68 5.3 3D Beam under Bending Load 71 5.4 3D Plate under Bending Load 73 Chapter 6 Practical Example Demonstration 77 6.1 Static Structural Analysis of the Front Cover 77 6.1.1 Introduction of the front cover of the motor 77 6.1.2 Convergence test 80 6.1.3 Load and support setting 81 6.1.4 Analysis result 84 6.2 BESO Design Process 86 Chapter 7 Conclusions and Suggestions 95 7.1 Conclusions 95 7.2 Suggestions 96 REFERENCE 98 Appendix A: Element Sensitivity Formulation Derivation 104 A-1 Stiffness Maximization under Fix Load 104 A-2 Stiffness Maximization under Self-Weight Load 106 Appendix B: User Manual of BESO Program 108 B-1 Operation Steps of BESO Program 108 B-2 Input Data of BESO Program 109 B-3 Output Data of BESO Program 113 B-4 Tips of using BESO Program 114 | |
dc.language.iso | en | |
dc.title | 具有加工限制之結構最佳化雙向演進法 | zh_TW |
dc.title | Bi-Directional Evolutionary Structural Optimization Method with Manufacturing Constraints | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 史建中(Jian-Zhong Shi),尤春風(Chun-Fong You) | |
dc.subject.keyword | 結構最佳化,結構最佳化演進法,網格獨立篩選機制,加工限制, | zh_TW |
dc.subject.keyword | structural optimization,evolutionary structural optimization,mesh-independency filter,manufacturing constraints, | en |
dc.relation.page | 115 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 6.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。