請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60974
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭大維(Tei-Wei Kuo) | |
dc.contributor.author | Ling-Chia Ku | en |
dc.contributor.author | 顧凌嘉 | zh_TW |
dc.date.accessioned | 2021-06-16T10:39:19Z | - |
dc.date.available | 2016-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-13 | |
dc.identifier.citation | [1] IEEE Std. 802.11n-2009: Enhancements for higher throughput. http://
www.ieee802.org. [2] Pefkianakis Ioannis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and Songwu Lu. MIMO rate adaptation in 802.11n wireless networks. In Proc. of ACM Mobicom, pages 257- -268, 2010. [3] Ki-Young Jang, Shuai Hao, Anmol Sheth, and Ramesh Govindan. Snooze: energy management in 802.11n WLANs. In Proc. of ACM CoNEXT, pages 12:1--12:12, 2011. [4] Ninad Warty, Ramanujan K. Sheshadri, Wei Zheng, and Dimitrios Koutsonikolas. A first look at 802.11n power consumption in smartphones. In Proc. of ACM PINGEN, pages 27--32, 2012. [5] Daniel Halperin, Ben Greenstein, Anmol Sheth, and David Wetherall. Demystifying 802.11n power consumption. In Proc. of USENIX HotPower, pages 1--, 2010. [6] Pefkianakis I., Chi-Yu Li, and Songwu Lu. What is wrong/right with IEEE 802.11n Spatial Multiplexing Power Save feature? In Proc. of IEEE ICNP, pages 186--195, 2011. [7] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11, pages 1--667, 2012. [8] Dropbox. http://www.dropbox.com. [9] LINE. http://line.naver.jp. [10] Hossein Falaki, Ratul Mahajan, and Srikanth Kandula. Diversity in Smartphone Usgae. In Proc. of ACM MobiSys, pages 179--193, 2010. [11] Paulraj A.J., Gore D.A., Nabar R.U., and Bolcskei H. An overview of MIMO communications - a key to gigabit wireless. Proceedings of the IEEE, 92(2):198--218, 2004. [12] Taesang Yoo and Goldsmith A. Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Transactions on Information Theory, 52(5):2203--2214, 2006. [13] Lizhong Zheng and Tse D.N.C. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5): 1073--1096, 2003. [14] A.S. Behbahani, R. Merched, and A.M. Eltawil. Optimizations of a MIMO Relay Network. IEEE Transactions on Signal Processing, 56(10):5062--5073, 2008. [15] T. R. Ramya and Srikrishna Bhashyam. Rate adaptation in MIMO antenna selection system with imperfect CSIT. In Proc. of IEEE COMSNETS, pages 486--490, 2010. [16] Shuguang Cui, Andrea J. Goldsmith, and Ahmad Bahai. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22:1089--1098, 2004. [17] Mostafa Khoshnevisan and Nicholas Laneman. Power Allocation in Multi-Antenna Wireless Systems Subject to Simultaneous Power Constraints. IEEE Trans. on Communications, 60(12):3855--3864, 2012. [18] Guowang Miao. Energy-efficient uplink multi-user MIMO with dynamic antenna management. In Proc. of IEEE GLOBECOM, pages 3437--3442, 2012. [19] S. Sanayei and A. Nosratinia. Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10):68--73, 2004. [20] A.F. Molisch. MIMO systems with antenna selection - an overview. In Proc. of IEEE RAWCON, pages 167--170, 2003. [21] A. Mukherjee and A. Hottinen. Learning algorithms for energy-efficient MIMO antenna subset selection: Multi-armed bandit framework. In Proc. of IEEE EUSIPCO, pages 659--663, 2012. [22] Chi-Yu Li, Chunyi Peng, Songwu Lu, and Xinbing Wang. Energy-based rate adaptation for 802.11n. In Proc. of ACM Mobicom, pages 341--352, 2012. [23] Hongseok Kim, Chan-Byoung Chae, Gustavo De Veciana, and Robert W. Heath. A cross-layer approach to energy efficiency for adaptive MIMO systems exploiting spare capacity. IEEE Transactions on Wireless Communications, 8(8):4264--4275, 2009. [24] I. Pefkianakis, S.-B. Lee, and S. Lu. MIPS: MIMO power save in 802.11n wireless networks. In Tech. Rep. TR-100040, UCLA Comput. Sci. Dept., 2010. [25] Hang Yu, Lin Zhong, and A. Sabharwal. Power Management of MIMO Network Interfaces on Mobile Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(7):1175--1186, 2012. [26] A. He, S. Srikanteswara, Kyung Kyoon Bae, T.R. Newman, J.H. Reed, W.H. Tranter, M. Sajadieh, and M. Verhelst. Power Consumption Minimization for MIMO Systems - A Cognitive Radio Approach. IEEE Journal on Selected Areas in Communications, 29(2):469--479, 2011. [27] A. Ghosh, D.R. Wolter, J.G. Andrews, and Runhua Chen. Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential. IEEE Communications Magazine, 43(2):129--136, 2005. [28] Arunesh Mishra, Vivek Shrivastava, Dheeraj Agrawal, Suman Banerjee, and Samrat Ganguly. Distributed channel management in uncoordinated wireless environments. In Proc. of ACM MobiCom, pages 170--181, 2006. [29] Wi-Fi power conservation: Standards and beyond. http:// www.networkworld.com/ research/ 2008/051208-wirelesspower- standards.html. [30] Yu Tang, Pi-Cheng Hsiu, Jiun-Long Huang, and Ming-Syan Chen. iLauncher: an intelligent launcher for mobile apps based on individual usage patterns. In Proc. of ACM SAC, pages 505--512, 2013. [31] tcpdump. dump traffic on a network. http://www.tcpdump.org/. [32] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012- 2017, 2013. http://www.cisco.com/. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60974 | - |
dc.description.abstract | 隨著無線網路資料傳輸的爆炸性成長,越來越多的智慧終端設備已配備支援 IEEE 802.11n 標準的多天線無線網路介面卡以應付智慧終端上各式各樣的應用,包括一些帶寬密集型應用。
最近研究顯示,802.11n 介面卡隨著天線個數的增加,也帶來相當大的耗電,因此智慧終端設備的多天線能源管理是一項重要的挑戰。 在本文中,我們提出一套多天線的動態管理機制來有效降低多天線的智慧終端設備的資料傳輸耗能。 其關鍵思想是根據進入網絡佇列中的傳輸資料量,動態地調整天線配置以達到能源和帶寬之間的權衡。首先,我們建立動態多天線管理最佳化問題的耗電模型,最小化多天線智慧終端設備進行資料傳輸的總能量耗損。第二,我們在離線的環境下提出了一個最佳化動態規劃演算法 ,並於在線的環境下提出一套競爭演算法與競爭比理論分析。實驗結果顯示多天線的動態管理機制與現存 802.11n 於智慧終端設備上的能源節省機制相比可達到百分之五十的能源節省。 | zh_TW |
dc.description.abstract | Increasingly, mobile devices equipped with 802.11n interfaces are being used for a wide variety of applications including some bandwidth-intensive applications. Recent work has shown that 802.11n interfaces are power-hungry with the increased antennas, so energy management for multi-antenna mobile devices is an important challenge. In this paper, we present a dynamic multi-antenna management mechanism (DAM) to reduce the communication energy consumption of MIMO-based mobile devices. The key idea is to dynamically adjusts antenna configuration according to packet workloads come into the network queue to realize and trade-off between energy savings and bandwidth. First, we model the problem with an objective
to minimize the total energy consumption of MIMO-based mobile devices for transmission. Second, we propose an offline optimal dynamic-programming algorithm to solve the fundamental problem and given a competitive online algorithm with theoretical analysis. The results of experiments conducted based on real user traces to evaluate the efficacy of the proposed design show that DAM could achieve 50\% energy saving of an native power saving mechanism supported by commercial 802.11n mobile devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:39:19Z (GMT). No. of bitstreams: 1 ntu-102-R00922062-1.pdf: 2720534 bytes, checksum: 492ad0c96458626f41a9da4eeb7f0873 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝ii 中文摘要iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 System Model and Problem Definition 5 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Dynamic Multi-Antenna Management Optimization 11 3.1 An Optimal Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 A Competitive Online Algorithm . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Implementation Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Performance Evaluation 22 4.1 Simulation Setups and Performance Metrics . . . . . . . . . . . . . . . . 22 4.2 Popular Mobile Applications . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Daily Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 Future Potential Workloads . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Conclusions 32 A Appendix 33 Bibliography 40 | |
dc.language.iso | en | |
dc.title | 智慧終端耗電與頻寬權衡之多天線管理機制 | zh_TW |
dc.title | Dynamic Multi-Antenna Management for Uplink Datarate and Energy Tradeoff on Mobile Devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 修丕承(Pi-Cheng Hsiu) | |
dc.contributor.oralexamcommittee | 陳銘憲(Ming-Syan Chen),洪士灝(Shih-Hao Hung),張原豪(Yuan-Hao Chang) | |
dc.subject.keyword | 多天線管理機制,多進多出,無線傳輸能源節省,多天線智慧終端設備,能源效率最佳化, | zh_TW |
dc.subject.keyword | Multi-Antenna management,multiple-input-multiple-output(MIMO),wireless energy savings,MIMO-based mobile devices,Energy-efficient optimization, | en |
dc.relation.page | 43 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。