Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧子彬(Tzu-Pin Lu),李永凌(Yungling L. Lee)
dc.contributor.authorChing-Hui Tsaien
dc.contributor.author蔡靜慧zh_TW
dc.date.accessioned2021-06-16T10:37:24Z-
dc.date.available2020-08-27
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-07-02
dc.identifier.citation1. CDC. Centers for Disease Control and Prevention. Vital signs: asthma prevalence, disease characteristics, and self-management education: United States, 2001–2009. MMWR Morb Mortal Wkly Rep 2011;60:547-52.
2. Silverstein MD, Mair JE, Katusic SK, Wollan PC, O'Connell E J, Yunginger JW. School attendance and school performance: a population-based study of children with asthma. J Pediatr 2001;139:278-83.
3. Spee-van der Wekke J, Meulmeester JF, Radder JJ, Verloove-Vanhorick SP. School absence and treatment in school children with respiratory symptoms in The Netherlands: data from the Child Health Monitoring System. J Epidemiol Community Health 1998;52:359-63.
4. Weiss KB, Sullivan SD. Socio-economic burden of asthma, allergy, and other atopic illnesses. Pediatr Allergy Immunol 1994;5:7-12.
5. Calsbeek H, Morren M, Bensing J, Rijken M. Knowledge and attitudes towards genetic testing: a two year follow-up study in patients with asthma, diabetes mellitus and cardiovascular disease. J Genet Couns 2007;16:493-504.
6. Lee YL, Lin YC, Hwang BF, Guo YL. Changing prevalence of asthma in Taiwanese adolescents: two surveys 6 years apart. Pediatr Allergy Immunol 2005;16:157-64.
7. Tsai CH, Huang JH, Hwang BF, Lee YL. Household environmental tobacco smoke and risks of asthma, wheeze and bronchitic symptoms among children in Taiwan. Respir Res 2010;11:11.
8. Yeh KW, Ou LS, Yao TC, Chen LC, Lee WI, Huang JL. Prevalence and risk factors for early presentation of asthma among preschool children in Taiwan. Asian Pac J Allergy Immunol 2011;29:120-6.
9. Wu WF, Wan KS, Wang SJ, Yang W, Liu WL. Prevalence, severity, and time trends of allergic conditions in 6-to-7-year-old schoolchildren in Taipei. J Investig Allergol Clin Immunol 2011;21:556-62.
10. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006;7:95-100.
11. Allen M, Heinzmann A, Noguchi E, et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003;35:258-63.
12. Zhang Y, Leaves NI, Anderson GG, et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 2003;34:181-6.
13. Brasch-Andersen C, Tan Q, Borglum AD, et al. Significant linkage to chromosome 12q24.32-q24.33 and identification of SFRS8 as a possible asthma susceptibility gene. Thorax 2006;61:874-9.
14. Noguchi E, Yokouchi Y, Zhang J, et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am J Respir Crit Care Med 2005;172:183-8.
15. Nicolae D, Cox NJ, Lester LA, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005;76:349-57.
16. Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007;448:470-3.
17. Tavendale R, Macgregor DF, Mukhopadhyay S, Palmer CN. A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J Allergy Clin Immunol 2008;121:860-3.
18. Galanter J, Choudhry S, Eng C, et al. ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 2008;177:1194-200.
19. Kim KW, Ober C. Lessons learned from GWAS of asthma. Allergy Asthma Immunol Res 2019;11:170-87.
20. Cookson W, Moffatt M, Strachan DP. Genetic risks and childhood-onset asthma. J Allergy Clin Immunol 2011;128:266-70.
21. Lozano P, Sullivan SD, Smith DH, Weiss KB. The economic burden of asthma in US children: Estimates from the National Medical Expenditure Survey. J Allergy Clin Immunol 1999;104:957-63.
22. Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 2014;46:51-5.
23. McGeachie MJ, Wu AC, Tse SM, et al. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. J Allergy Clin Immunol 2015;136:1503-10.
24. Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol 2010;125:S81-94.
25. Carr TF, Bleecker E. Asthma heterogeneity and severity. World Allergy Organ J 2016;9:41.
26. Domachowske JB, Rosenberg HF. Respiratory syncytial virus infection: immune response, immunopathogenesis, and treatment. Clin Microbiol Rev 1999;12:298-309.
27. Parrott RH, Kim HW, Arrobio JO, et al. Epidemiology of respiratory syncytial virus infection in Washington, D.C. II. Infection and disease with respect to age, immunologic status, race and sex. Am J Epidemiol 1973;98:289-300.
28. Holberg CJ, Wright AL, Martinez FD, Ray CG, Taussig LM, Lebowitz MD. Risk factors for respiratory syncytial virus-associated lower respiratory illnesses in the first year of life. Am J Epidemiol 1991;133:1135-51.
29. Welliver RC, Kaul TN, Putnam TI, Sun M, Riddlesberger K, Ogra PL. The antibody response to primary and secondary infection with respiratory syncytial virus: kinetics of class-specific responses. J Pediatr 1980;96:808-13.
30. Cranage MP, Gardner PS. Systemic cell-mediated and antibody responses in infants with respiratory syncytial virus infections. J Med Virol 1980;5:161-70.
31. Wu P, Hartert TV. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev Anti Infect Ther 2011;9:731-45.
32. Glezen WP, Loda FA, Clyde WA, Jr., et al. Epidemiologic patterns of acute lower respiratory disease of children in a pediatric group practice. J Pediatr 1971;78:397-406.
33. Wright AL, Taussig LM, Ray CG, Harrison HR, Holberg CJ. The Tucson Children's Respiratory Study. II. Lower respiratory tract illness in the first year of life. Am J Epidemiol 1989;129:1232-46.
34. Jartti T, Lehtinen P, Vuorinen T, et al. Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 2004;10:1095-101.
35. Gern JE. Virus/allergen interaction in asthma exacerbation. Ann Am Thorac Soc 2015;12 Suppl 2:S137-43.
36. Mandelcwajg A, Moulin F, Menager C, Rozenberg F, Lebon P, Gendrel D. Underestimation of influenza viral infection in childhood asthma exacerbations. J Pediatr 2010;157:505-6.
37. Sykes A, Johnston SL. Etiology of asthma exacerbations. J Allergy Clin Immunol 2008;122:685-8.
38. Merckx J, Ducharme FM, Martineau C, et al. Respiratory viruses and treatment failure in children with asthma exacerbation. Pediatrics 2018;142.
39. Diette GB, Markson L, Skinner EA, Nguyen TT, Algatt-Bergstrom P, Wu AW. Nocturnal asthma in children affects school attendance, school performance, and parents' work attendance. Arch Pediatr Adolesc Med 2000;154:923-8.
40. Fuhlbrigge AL, Weiss ST, Kuntz KM, Paltiel AD, Group CR. Forced expiratory volume in 1 second percentage improves the classification of severity among children with asthma. Pediatrics 2006;118:e347-55.
41. Carroll KN, Wu P, Gebretsadik T, et al. Season of infant bronchiolitis and estimates of subsequent risk and burden of early childhood asthma. J Allergy Clin Immunol 2009;123:964-6.
42. Escobar GJ, Ragins A, Li SX, Prager L, Masaquel AS, Kipnis P. Recurrent wheezing in the third year of life among children born at 32 weeks' gestation or later: relationship to laboratory-confirmed, medically attended infection with respiratory syncytial virus during the first year of life. Arch Pediatr Adolesc Med 2010;164:915-22.
43. Liao H, Yang Z, Yang C, et al. Impact of viral infection on acute exacerbation of asthma in out-patient clinics: a prospective study. J Thorac Dis 2016;8:505-12.
44. de Steenhuijsen Piters WA, Heinonen S, Hasrat R, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med 2016;194:1104-15.
45. Brand HK, Ahout IM, de Ridder D, et al. Olfactomedin 4 serves as a marker for disease severity in pediatric respiratory syncytial virus (RSV) infection. PLoS One 2015;10:e0131927.
46. Mejias A, Dimo B, Suarez NM, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med 2013;10:e1001549.
47. Herberg JA, Kaforou M, Gormley S, et al. Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J Infect Dis 2013;208:1664-8.
48. Ioannidis I, McNally B, Willette M, et al. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 2012;86:5422-36.
49. Zaas AK, Chen M, Varkey J, et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe 2009;6:207-17.
50. Faiz A, Burgess JK. How can microarrays unlock asthma? Journal of allergy 2012;2012:241314.
51. Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012;7:e41361.
52. Strunk RC, Sternberg AL, Bacharier LB, Szefler SJ. Nocturnal awakening caused by asthma in children with mild-to-moderate asthma in the childhood asthma management program. J Allergy Clin Immunol 2002;110:395-403.
53. Thomas D. Gene--environment-wide association studies: emerging approaches. Nat Rev Genet 2010;11:259-72.
54. Wu RQ, Zhao XF, Wang ZY, Zhou M, Chen QM. Novel molecular events in oral carcinogenesis via integrative approaches. J Dent Res 2011;90:561-72.
55. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006;22:2825-7.
56. Shah N, Guo Y, Wendelsdorf KV, Lu Y, Sparks R, Tsang JS. A crowdsourcing approach for reusing and meta-analyzing gene expression data. Nat Biotechnol 2016;34:803-6.
57. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.
58. Warnes GR, Bolker B, Bonebakker L, et al. gplots: Various R programming tools for plotting data. http://www.r-project.org.
59. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882-3.
60. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013;45:580-5.
61. Plaisier CL, O'Brien S, Bernard B, et al. Causal mechanistic regulatory network for glioblastoma deciphered using systems genetics network analysis. Cell Syst 2016;3:172-86.
62. Su MW, Lin WC, Tsai CH, et al. Childhood asthma clusters reveal neutrophil-predominant phenotype with distinct gene expression. Allergy 2018;73:2024-32.
63. Yeh YL, Su MW, Chiang BL, Yang YH, Tsai CH, Lee YL. Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype. Clin Exp Allergy 2018;48:1164-72.
64. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529.
65. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc 2010;5:1564-73.
66. Arigo biolaboratories. (2018, October 03). Human respiratory syncytial virus (RSV) IgM antibody ELISA Kit (ARG80601). Retrieved from https://www.arigobio.com/Human-Respiratory-syncytial-virus-RSV-IgM-antibody-ELISA-Kit-ARG80601.html.
67. Dakhama A, Park JW, Taube C, et al. The role of virus-specific immunoglobulin E in airway hyperresponsiveness. Am J Respir Crit Care Med 2004;170:952-9.
68. Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol 2007;120:S94-S138.
69. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-38.
70. The CAMP Group. The Childhood Asthma Management Program (CAMP): design, rationale, and methods. Childhood Asthma Management Program Research Group. Control Clin Trials 1999;20:91-120.
71. Himes BE, Jiang X, Hu R, et al. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet 2012;8:e1002824.
72. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75.
73. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7.
74. RStudio. RStudio: Integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. 2015.
75. Giovannini-Chami L, Marcet B, Moreilhon C, et al. Distinct epithelial gene expression phenotypes in childhood respiratory allergy. Eur Respir J 2012;39:1197-205.
76. McErlean P, Berdnikovs S, Favoreto S, Jr., et al. Asthmatics with exacerbation during acute respiratory illness exhibit unique transcriptional signatures within the nasal mucosa. Genome Med 2014;6:1.
77. Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 2002;18 Suppl 1:S105-10.
78. Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002;30:e15.
79. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40:D930-4.
80. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015;12:931-4.
81. Schmitter T, Agerer F, Peterson L, Munzner P, Hauck CR. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J Exp Med 2004;199:35-46.
82. Gray-Owen SD, Blumberg RS. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 2006;6:433-46.
83. Shikotra A, Choy DF, Siddiqui S, et al. A CEACAM6-high airway neutrophil phenotype and CEACAM6-high epithelial cells are features of severe asthma. J Immunol 2017;198:3307-17.
84. Zan J, Zhang H, Gu AP, et al. Yin Yang 1 Dynamically regulates antiviral innate immune responses during viral infection. Cell Physiol Biochem 2017;44:607-17.
85. Scheidereit C, Heguy A, Roeder RG. Identification and purification of a human lymphoid-specific octamer-binding protein (OTF-2) that activates transcription of an immunoglobulin promoter in vitro. Cell 1987;51:783-93.
86. Salerno DM, Tront JS, Hoffman B, Liebermann DA. Gadd45a and Gadd45b modulate innate immune functions of granulocytes and macrophages by differential regulation of p38 and JNK signaling. J Cell Physiol 2012;227:3613-20.
87. Straface E, Matarrese P, Gambardella L, et al. N-Acetylcysteine counteracts erythrocyte alterations occurring in chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2000;279:552-6.
88. Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009;5:e1000429.
89. Koh YY, Kang H, Kim CK. Ratio of serum eosinophil cationic protein/blood eosinophil counts in children with asthma: comparison between acute exacerbation and clinical remission. Allergy Asthma Proc 2003;24:269-74.
90. Rangasamy T, Guo J, Mitzner WA, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 2005;202:47-59.
91. Komaravelli N, Tian B, Ivanciuc T, et al. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radic Biol Med 2015;88:391-403.
92. Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018;119:6366-82.
93. Kutok JL, Yang X, Folkerth R, Adra CN. Characterization of the expression of HTm4 (MS4A3), a cell cycle regulator, in human peripheral blood cells and normal and malignant tissues. J Cell Mol Med 2011;15:86-93.
94. Adra CN, Mao XQ, Kawada H, et al. Chromosome 11q13 and atopic asthma. Clin Genet 1999;55:431-7.
95. Scholtens S, Postma DS, Moffatt MF, et al. Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. J Allergy Clin Immunol 2014;133:885-8.
96. Qiu C, Tian D, Wan Y, et al. Early adaptive humoral immune responses and virus clearance in humans recently infected with pandemic 2009 H1N1 influenza virus. PLoS One 2011;6:e22603.
97. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25.
98. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 2016;32:1479-85.
99. Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics 2009;25:415-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60938-
dc.description.abstract背景及目的:
呼吸道融合病毒(Respiratory syncytial virus, RSV)是造成人類呼吸道感染的主因,並且與氣喘發作有關。然而,並非所有氣喘孩童在感染RSV後,均會發生氣喘發作的症狀,孩童本身的基因對氣喘發作嚴重程度也有貢獻。因此,本研究目的將結合RSV感染、全基因體基因表現及全基因體基因型資料,探討影響氣喘發作的標的基因。
方法:
以Gene Expression Omnibus (GEO)資料庫進行RSV感染的轉錄體資料的統合分析,討論RSV感染的顯著基因及生物路徑,以數量性狀基因座(expression quantitative trait loci, eQTL)分析,搜尋潛在影響RSV感染顯著基因的單一核苷酸多型性(single nucleotide polymorphisms, SNPs),於台灣孩童氣喘研究聯盟(Taiwanese Consortium of Childhood Asthma Study, TCCAS)中,利用以基因為基礎的邏輯式回歸篩選氣喘發作的基因,並於獨立族群(Childhood Asthma Management Program, CAMP)驗證,最後進行基因、RSV感染與氣喘發作的交互作用分析。
結果:
利用RSV感染的轉錄體資料進行統合分析後,發現352個顯著表現基因(FDR<0.05)。利用38,123個SNPs進行與氣喘發作的相關性分析,我們發現11個SNPs位於GADD45A、GYPB、MS4A3、NFE2、RNASE3、EPB41L3、CEACAM6及CEACAM3等8個基因與氣喘發作有顯著相關(FDR<0.05),並也經過獨立族群驗證,其中rs7251960 (CEACAM3)會修飾RSV感染對氣喘發作的風險(p for interaction <0.05)。在肺部組織中,rs7251960的核苷酸變異與CEACAM3 基因表達量有顯著相關(p for trend=1.2×10-7)。利用兩個獨立的族群資料分析,發現相對於非氣喘發作者,氣喘發作者的鼻腔黏膜CEACAM3 基因表現量較低。
結論:
GADD45A、GYPB、MS4A3、NFE2、RNASE3、EPB41L3、CEACAM6及CEACAM3是影響氣喘發作的基因。rs7251960是影響CEACAM3基因表現的數量性狀基因座,且CEACAM3 基因表現量與氣喘發作有顯著相關,CEACAM3可修飾RSV潛在感染對於氣喘發作的影響。
zh_TW
dc.description.abstractBackground:
Respiratory syncytial virus (RSV) is a major cause of human respiratory infections and is associated with asthma exacerbations, the symptoms of which include nocturnal wheezing and severe wheezing causing limited speech. Nevertheless, not all children exposed to RSV develop asthma symptoms, possibly because genes modulate the effects of RSV on asthma exacerbations.
Objective:
The purpose of this study was to identify genes that modulate the effect of RSV latent infection on asthma exacerbations on a genome-wide scale.
Methods:
We performed an in silico meta-analysis to investigate differentially expressed genes (DEGs) of RSV infection from Gene Expression Omnibus (GEO) datasets. Expression quantitative trait loci (eQTL) methods were applied to select single nucleotide polymorphisms (SNPs) that were associated with DEGs. SNPs located in the gene range ± 5 kb were included. Gene-based analysis was used to identify SNPs that were significantly associated with asthma exacerbations in the Taiwanese Consortium of Childhood Asthma Study (TCCAS) and validation was attempted in an independent cohort, the Childhood Asthma Management Program (CAMP). Gene-RSV interaction analyses were performed to investigate the association between the interaction of SNPs and RSV latent infection on asthma exacerbations.
Results:
A total of 352 significant DEGs were found by meta-analysis of RSV-related genes. We used 38,123 SNPs related to DEGs to investigate the genetic main effects on asthma exacerbations. We found that eight RSV-related genes (GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3) were significantly associated with asthma exacerbations in TCCAS and also validated in CAMP. In TCCAS, rs7251960 (CEACAM3) significantly modulated the effect of RSV latent infection on asthma exacerbations (FDR<0.05). The rs7251960 variants were associated with CEACAM3 mRNA expression in lung tissue (p for trend=1.2×10-7). CEACAM3 mRNA was reduced in nasal mucosa from subjects with asthma exacerbations in two independent datasets.
Conclusion:
GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3 are potential markers of asthma exacerbations. rs7251960 is an eQTL for CEACAM3, and CEACAM3 mRNA expression is reduced in subjects experiencing asthma exacerbations. CEACAM3 may be a modulator of RSV latent infection on asthma exacerbations.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:37:24Z (GMT). No. of bitstreams: 1
U0001-0107202016223200.pdf: 11236561 bytes, checksum: 04d039bb9f789cc0f45a39731d5193f3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 ii
致謝…………… iii
中文摘要 iv
Abstract vi
1. Introduction 1
1.1 Importance of asthma in children 1
1.2 Genetic susceptibility to asthma and asthma exacerbations in children 1
1.3 Epidemiology of respiratory syncytial virus (RSV) 4
1.4 RSV infection and asthma and asthma exacerbations 4
1.5 RSV infection related genes 5
1.6 Significance of gene-RSV interaction analysis in asthma exacerbations 7
2. Study objectives 10
3. Study flowchart 13
4. Materials and Methods 14
4.1 Target genes and SNPs selection 14
4.1.1 Meta-analysis of RSV-related genes 14
4.1.2 Expression Quantitative Trait Loci (eQTL) analysis and SNPs identification 16
4.2 Study population 16
4.3 DNA preparation and genotyping 17
4.4 RSV latent infection measurement 17
4.5 Definition of asthma outcomes 18
4.6 Independent cohort 19
4.7 Statistical analyses 19
4.8 eQTL, mRNA analyses and ENCODE analysis of target SNPs 21
5. Results 22
5.1 Meta-analysis of RSV infection transcriptomics 23
5.2 RSV-related SNPs identification 27
5.3 Clinical characteristics of study populations 27
5.4 Genetic main effects on asthma exacerbations 28
5.5 CEACAM3 modulates the effects of RSV latent infection on asthma exacerbations 32
5.6 CEACAM3 and RSV latent infection on pulmonary function 33
5.7 rs7251960, CEACAM3 and asthma exacerbations 35
5.8 Potentially biological regulatory of rs7251960 in CEACAM3 36
6. Discussion 39
6.1 Summary 39
6.2 CEACAM3 associated with asthma or RSV 39
6.3 CEACAM3 associated regulatory genes of RSV and asthma 40
6.4 Other genes associated with asthma or RSV 42
6.5 Validation 43
6.6 Strengths 44
6.7 Limitations 45
6.8 Conclusions 46
7. References 47

圖目錄Listing of figures
Figure 1. Word cloud consisting of asthma-related genes from meta-analyses of asthma genome-wide association studies. 2
Figure 2. Gene-environment interactions in heterogeneity and severity of asthma 3
Figure 3. Candidate genes associated with severe RSV infection and asthma 8
Figure 4. Schema of omics technologies and their corresponding analysis targets. 9
Figure 5. Flowchart of the study 13
Figure 6. Flow chart showing study design and results. 22
Figure 7. Volcano plot of RSV-related genes for meta-analysis. 24
Figure 8. Difference of gene expression between RSV infection acute phase and recovery phase/healthy controls. 25
Figure 9. Canonical pathways of RSV-related differentially expressed genes by IPA. 26
Figure 10. Joint effects of CEACAM3 SNP genotypes and RSV infection on asthma exacerbations in TCCAS cohort. 32
Figure 11. rs7251960 is an eQTL for CEACAM3 in lung tissue and whole blood, and CEACAM3 mRNA expression is reduced in the nasal mucosa of subjects with asthma exacerbations. 35
Figure 12. Summary of CEACAM3 and associated regulatory genes of RSV and asthma. 41
Figure 13. LD plots of SNPs in CEACAM3 gene 43

表目錄 Listing of tables
Table 1. Published genome-wide gene expression papers related to RSV infection in human studies 6
Table 2. Genome-wide gene expression studies from human peripheral blood related to RSV infection 23
Table 3. Clinical characteristics of TCCAS and CAMP 27
Table 4. Gene-based main effects of SNPs on asthma exacerbations 29
Table 5. Results of analyses of genetic association and interaction of SNPs on asthma exacerbations 30
Table 6. Summary of rs7251960 and RSV latent infection on pulmonary function variables 34
Table 7. ENCODE analysis of rs7251960 potential regulatory mechanisms underlying eQTL for CEACAM3 37
Table 8. DeepSEA analyses of rs7251960 in CEACAM3 identify top 10 potential alterations (sorted by E-value) in transcription factor activities 38
Table 9. The associations between asthma exacerbations and other asthma outcomes 46

附錄 (Supplementary) 53
1. Materials and methods 53
1.1 RankProd method 53
1.2 Expression quantitative trait loci analysis 53
1.3 Removal anti-human IgG from sera or plasma sample 54
1.4 eQTL of CEACAM3 mRNA expression 55
1.5 mRNA analyses in asthmatic subjects from GEO datasets 56
2. Supplement tables 58
Table S1. Up-regulated differentially expressed genes in the meta-analysis of RSV infection 58
Table S2. Down-regulated differentially expressed genes in the meta-analysis of RSV infection 71
Table S3. Genetic main effects of SNPs with asthma exacerbations in TCCAS and CAMP, by additive genetic model 73
Table S4. Genetic main effects of SNPs with asthma exacerbations in TCCAS and CAMP, by dominant genetic model 79
dc.language.isoen
dc.subject氣喘zh_TW
dc.subject孩童zh_TW
dc.subject統合分析zh_TW
dc.subject基因環境交互作用zh_TW
dc.subject整合式分析zh_TW
dc.subjectchildrenen
dc.subjectasthmaen
dc.subjectmeta-analysisen
dc.subjectintegrative analysisen
dc.subjectgene-environment interactionen
dc.title以全基因轉錄體及基因環境交互作用探討RSV對氣喘發作的影響
zh_TW
dc.titleGenome-wide integrative analysis to identify genetic targets for RSV latent infection on asthma exacerbationsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-0998-8230
dc.contributor.oralexamcommittee江伯倫(Bor-Luen Chiang),張雅貞(Ya-Jen Chang),沈志陽(Chen-Yang Shen)
dc.subject.keyword孩童,氣喘,統合分析,整合式分析,基因環境交互作用,zh_TW
dc.subject.keywordchildren,asthma,meta-analysis,integrative analysis,gene-environment interaction,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202001249
dc.rights.note有償授權
dc.date.accepted2020-07-02
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0107202016223200.pdf
  未授權公開取用
10.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved