Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶璨(Ching-Tsan Huang)
dc.contributor.authorLi-Hsin Huangen
dc.contributor.author黃莉欣zh_TW
dc.date.accessioned2021-06-16T10:37:02Z-
dc.date.available2018-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation1. Lederberg J (1952) Cell Genetics and Hereditary Symbiosis. Physiol Rev 32(4):403-430.
2. Weiss B & Richards.Cc (1967) Enzymatic Breakage and Joining of Deoxyribonucleic Acid .I. Repair of Single-Strand Breaks in DNA by an Enzyme System from Escherichia Coli Infected with T4 Bacteriophage. Proceedings of the National Academy of Sciences of the United States of America 57(4):1021-&.
3. Smith HO & Wilcox KW (1970) A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. Journal of molecular biology 51(2):379-391.
4. Ruppert C, et al. (2013) Napsin A knockout Mice show Surfactant Processing Disorders and Induction of ER-Stress but not fibrotic Lung-Phenotype. Internist 54:113-114.
5. Easton JA, et al. (2013) The G45E mutation in connexins 26 & 31 causes a unique cellular phenotype resulting in cell death. Journal of Investigative Dermatology 133:S138-S138.
6. Phillips GJ (2001) Green fluorescent protein - a bright idea for the study of bacterial protein localization. FEMS microbiology letters 204(1):9-18.
7. Russell JH & Keiler KC (2007) Peptide signals encode protein localization. Journal of bacteriology 189(21):7581-7585.
8. Fox S (2000) 'Golden Rice' intended for developing world - Transgenic crop contains high levels of beta-carotene. Genet Eng News 20(12):42-+.
9. Jacks TJ, De Lucca AJ, Rajasekaran K, Stromberg K, & van Pee KH (2000)Antifungal and peroxidative activities of nonheme chloroperoxidase in relation to transgenic plant protection. Journal of agricultural and food chemistry 48(10):4561-4564.
10. Wandelt C (2007) Implementation of general surveillance for amflora potato cultivation - Data management. J Verbrauch Lebensm 2:70-71.
11. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Applied microbiology and biotechnology 65(4):363-372.
12. Riggs AD (1981) Bacterial production of human insulin. Diabetes care 4(1):64-68.
13. Andersen DC & Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13(2):117-123.
14. Baneyx F & Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nature biotechnology 22(11):1399-1408.
15. Bessette PH, Qiu J, Bardwell JC, Swartz JR, & Georgiou G (2001) Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. Journal of bacteriology 183(3):980-988.
16. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology 72(2):211-222.
17. Lidia Westers HW, Wim J. Quax (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et biophysica acta 1694:299-310.
18. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nature biotechnology 22(11):1393-1398.
19. Jayapal KR, Wlaschin KF, Hu WS, & Yap MGS (2007) Recombinant protein therapeutics from CHO cells - 20 years and counting. Chem Eng Prog 103(10):40-47.
20. Caron AW, Archambault J, & Massie B (1990) High-Level Recombinant Protein-Production in Bioreactors Using the Baculovirus Insect Cell Expression System. Biotechnology and bioengineering 36(11):1133-1140.
21. Marchal I, Jarvis DL, Cacan R, & Verbert A (2001) Glycoproteins from insect cells: sialylated or not? Biological chemistry 382(2):151-159.
22. Patterson RM, Selkirk JK, & Merrick BA (1995) Baculovirus and Insect-Cell Gene-Expression - Review of Baculovirus Biotechnology. Environmental health perspectives 103(7-8):756-759.
23. Verma R, Boleti E, & George AJ (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. Journal of immunological methods 216(1-2):165-181.
24. Bitter GA, Chen KK, Banks AR, & Lai PH (1984) Secretion of foreign proteins from Saccharomyces cerevisiae directed by alpha-factor gene fusions. Proceedings of the National Academy of Sciences of the United States of America 81(17):5330-5334.
25. Muller S, Sandal T, Kamp-Hansen P, & Dalboge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14(14):1267-1283.
26. Faber KN, Harder W, Ab G, & Veenhuis M (1995) Review - Methylotrophic Yeasts as Factories for the Production of Foreign Proteins. Yeast11(14):1331-1344.
27. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnology advances 30(5):1119-1139.
28. Nevalainen KM, Te'o VS, & Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends in biotechnology 23(9):468-474.
29. Fowler T & Berka RM (1991) Gene expression systems for filamentous fungi. Curr Opin Biotechnol 2(5):691-697.
30. Wally O & Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM crops 1(4):199-206.
31. Feit C, et al. (1986) A high-affinity monoclonal antibody (GIF-1) to human gamma-interferon: neutralization of interferon mediated inhibition of retrovirus production and 2'-5' (A) synthetase induction. Experimental cell biology 54(4):212-219.
32. Daniell H, Streatfield SJ, & Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6(5):219-226.
33. Kapusta J, et al. (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13(13):1796-1799.
34. Daniell H, Lee SB, Panchal T, & Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. Journal of molecular biology 311(5):1001-1009.
35. Chen HF, Chang MH, Chiang BL, & Jeng ST (2006) Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 24(15):2944-2951
36. Lai H & Chen Q (2012) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant cell reports 31(3):573-584.
37. Schaaf A, et al. (2005) Use of endogenous signal sequences for transient production and efficient secretion by moss (Physcomitrella patens) cells. BMC biotechnology 5.
38. Sainsbury F, Canizares MC, & Lomonossoff GP (2010) Cowpea mosaic Virus: The Plant Virus-Based Biotechnology Workhorse. Annu Rev Phytopathol 48:437-455.
39. Paulus KE, et al. (2011) Silencing beta1,2-xylosyltransferase in Transgenic Tomato Fruits Reveals xylose as Constitutive Component of Ige-Binding Epitopes. Frontiers in plant science 2:42.
40. Fox JL (2003) Puzzling industry response to ProdiGene fiasco. Nature biotechnology 21(1):3-4.
41. Ruf S, Karcher D, & Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America 104(17):6998-7002.
42. M.R. Challen KEG, S. Sreenivasaprasad, C.C. Rogers, S.B. Cutler, D.C. Diaper, T.J. Elliott and G.D. Foster (2000) Transformation technologies for mushrooms. Mushroom Science 15(1):10.
43. Binninger DM, Skrzynia C, Pukkila PJ, & Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. The EMBO journal 6(4):835-840.
44. Munoz-Rivas A, et al. (1986) Transformation of the basidiomycete, Schizophyllum commune. Molecular & general genetics : MGG 205(1):103-106.
45. Yanai K, et al. (1996) The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Bioscience, biotechnology, and biochemistry 60(3):472-475.
46. van de Rhee MD, Graca PM, Huizing HJ, & Mooibroek H (1996) Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Molecular & general genetics : MGG 250(3):252-258.
47. Jesenak M, et al. (2013) Immunomodulatory effect of pleuran (beta-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. International immunopharmacology 15(2):395-399.
48. Zhang Y, Dai L, Kong X, & Chen L (2012) Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus. International journal of biological macromolecules 51(3):259-265.
49. Devi KS, et al. (2013) Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydrate polymers 94(2):857-865.
50. Wang H, Gao J, & Ng TB (2000) A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochemical and biophysical research communications 275(3):810-816.
51. Alarcon J & Aguila S (2006) Lovastatin production by Pleurotus ostreatus: effects of the C:N ratio. Zeitschrift fur Naturforschung. C, Journal of biosciences 61(1-2):95-98.
52. Tasaki Y, Toyama S, Kuribayashi T, & Joh T (2013) Molecular characterization of a lipoxygenase from the basidiomycete mushroom Pleurotus ostreatus. Bioscience, biotechnology, and biochemistry 77(1):38-45.
53. Salame TM, Knop D, Levinson D, Yarden O, & Hadar Y (2013) Redundancyamong Manganese Peroxidases in Pleurotus ostreatus. Applied and environmental microbiology 79(7):2405-2415.
54. Parenti A, et al. (2013) Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Bioresource technology 133:142-149.
55. Jambor V & Kenova E (1988) Levels of volatile fatty acids and cellulase activity in rumen fluid after feeding the substrate remaining after the cultivation of oyster mushrooms (Pleurotus ostreatus). Veterinarni medicina 33(5):297-302.
56. Butovich IA & Semichaevskii VD (1986) Catalytic properties of extracellular phenol oxidases from the higher basidiomycete Pleurotus ostreatus (Fr.) Kumm. Ukrainskii biokhimicheskii zhurnal 58(4):18-26.
57. Rajarathnam S & Bano Z (1987) Pleurotus mushrooms. Part I A. Morphology, life cycle, taxonomy, breeding, and cultivation. Critical reviews in food science and nutrition 26(2):157-223.
58. Peng M, Singh NK, & Lemke PA (1992) Recovery of recombinant plasmids from Pleurotus ostreatus transformants. Current genetics 22(1):53-59.
59. Irie T, et al. (2001) Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Applied microbiology and biotechnology 56(5-6):707-709.
60. Bolker M, Bohnert HU, Braun KH, Gorl J, & Kahmann R (1995) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Molecular & general genetics : MGG 248(5):547-552.
61. Kuo CY, Chou SY, Hseu RS, & Huang CT (2010) Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Bot Stud 51(3):303-309.
62. Kuo CY & Huang CT (2008) A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. Journal of microbiological methods 72(2):111-115.
63. Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, & Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current genetics 48(1):1-17.
64. Kunik T, et al. (2001) Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America 98(4):1871-1876.
65. Piers KL, Heath JD, Liang X, Stephens KM, & Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proceedings of the National Academy of Sciences of the United States of America 93(4):1613-1618.
66. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the 'gene-jockeying' tool. Microbiology and molecular biology reviews : MMBR 67(1):16-37, table of contents.
67. Meyer T (2008) Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum f. sp. cubense for pathogenicity gene analysis. Natural and Agricultural Sciences University of Pretoria.
68. Gelvin SB & Kim SI (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochimica et biophysica acta 1769(5-6):410-421.
69. Hanif M, Pardo AG, Gorfer M, & Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Current genetics 41(3):183-188.
70. 林浩業 (2012) 建立金針菇同源性篩選系統及B型肝炎口服疫苗之開發. 國立台灣大學生命科學院生化科技學系碩士論文.
71. 郭俊毅 (2008) 食藥用菇異源基因表現系統之建立及其應用. 國立台灣大學微生物與生物化學研究所博士論文.
72. Borovinskaya MA, Shoji S, Fredrick K, & Cate JH (2008) Structural basis for hygromycin B inhibition of protein biosynthesis. Rna 14(8):1590-1599.
73. Gonzalez A, Jimenez A, Vazquez D, Davies JE, & Schindler D (1978) Studies on the Mode of Action of Hygromycin-B, an Inhibitor of Translocation in Eukaryotes. Biochimica et biophysica acta 521(2):459-469.
74. Keon JP, White GA, & Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Current genetics 19(6):475-481.
75. Matsson M, Ackrell BA, Cochran B, & Hederstedt L (1998) Carboxin resistance in Paracoccus denitrificans conferred by a mutation in the membrane-anchor domain of succinate:quinone reductase. Archives of microbiology 170(1):27-37.
76. Matsson M & Hederstedt L (2001) The carboxin-binding site on succinate:quinone reductase identified by mutations. Journal of bioenergetics and biomembranes 33(2):99-105.
77. Skinner W, et al. (1998) A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Current genetics 34(5):393-398.
78. Broomfield PL & Hargreaves JA (1992) A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Current genetics 22(2):117-121.
79. Honda Y, Matsuyama T, Irie T, Watanabe T, & Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus.Current genetics 37(3):209-212.
80. Irie T, et al. (2003) Construction of a homologous selectable marker gene for Lentinula edodes transformation. Bioscience, biotechnology, and biochemistry 67(9):2006-2009.
81. Shimomura O, Johnson FH, & Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of cellular and comparative physiology 59:223-239.
82. Chalfie M, Tu Y, Euskirchen G, Ward WW, & Prasher DC (1994) Green Fluorescent Protein as a Marker for Gene-Expression. Science 263(5148):802-805.
83. Yang F, Moss LG, & Phillips GN, Jr. (1996) The molecular structure of green fluorescent protein. Nature biotechnology 14(10):1246-1251.
84. 呂映慈 (2010) 利用最佳化啟動子提升農桿菌媒介之金針菇表現系統蛋白質產量. 國立台灣大學微生物與生物化學研究所碩士論文.
85. 蔡媛禎 (2009) 以農桿菌媒介轉形法作為鮑魚菇異源表達之工具. 國立台灣大學微生物與生物化學研究所碩士論文.
86. Burns C, et al. (2005) Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal genetics and biology : FG & B 42(3):191-199.
87. Chen X, Stone M, Schlagnhaufer C, & Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Applied and environmental microbiology 66(10):4510-4513.
88. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends in cell biology 10(12):524-530.
89. Bowman SM & Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays : news and reviews in molecular, cellular and developmental biology 28(8):799-808.
90. Bhadauria V & Peng YL (2010) Optimization of a protein extraction technique for fungal proteomics. Indian journal of microbiology 50(Suppl 1):127-131.
91. Burton KS, Partis MD, Wood DA, & Thurston CF (1997) Accumulation of serine proteinase in senescent sporophores of the cultivated mushroom, Agaricus bisporus. Mycological research 101:146-152.
92. Nakamura M, Iketani A, & Shioi Y (2011) A survey of proteases in edible mushrooms with synthetic peptides as substrates. Mycoscience 52(4):234-241.
93. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends in biotechnology 24(9):426-432.
94. Chen J, Kadlubar FF, & Chen JZ (2007) DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic acids research 35(4):1377-1388.
95. 范嫺蘄 (2007) 以甘油醛-3-磷酸脫氫酶起動子研究美白菇轉形系統. 國立台灣大學微生物與生化學研究所碩士論文.
96. Vetter J (2007) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food chemistry 102(1):6-9.
97. Datta K, et al. (1998) Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97(1-2):20-30.
98. Hirano T, Sato T, & Enei H (2004) Isolation of genes specifically expressed in the fruit body of the edible basidiomycete Lentinula edodes. Bioscience, biotechnology, and biochemistry 68(2):468-472.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60931-
dc.description.abstract菇類分子農場係以菇類為生物反應器,生產醫藥用蛋白質或工業用酵素,具備安全性高、操作簡單及成本低廉等優勢,為近年來新興之生物技術應用。過去研究藉由農桿菌媒介轉形法成功進行多種菇類轉形,亦發展不同分生策略提升異源蛋白質表現量。前人發現可表現綠色螢光蛋白質之金針菇轉形株,其綠色螢光有聚集於蕈褶之現象,推測異源基因可能集中於蕈褶或是擔孢子中大量表現,因此本研究欲探討菇類轉形系統是否具有表現部位差異,以提供未來發展口服疫苗食用部位之參考。使用前人建立經序列刪減之金針菇甘油醛-3-磷酸脫氫酶 (glyceraldehyde-3-phosphate dehydrogenase, gpd) 啟動子 (gpd-d1) 表現報導基因綠色螢光蛋白質,而篩選標誌採用金針菇來源之萎鏽靈抗性基因 (carboxin resistance gene, cbr)。探討異源基因表現部位之差異,分為菌絲體以及子實體之蕈柄、蕈傘、擔孢子等四個部位,並同時探討鮑魚菇表現金針菇來源之啟動子與篩選標誌之可行性。為方便擔孢子分析,選用可大量產生擔孢子之鮑魚菇 (Pleurotus ostreatus) 做為表現宿主。結果顯示於篩選培養基可順利篩選出鮑魚菇轉形株,並確認目標基因嵌入至宿主染色體 DNA 與綠色螢光蛋白質表現,證明金針菇來源之 gpd-d1 啟動子與篩選標誌可於鮑魚菇中表現,拓展金針菇萎鏽靈篩選標誌跨物種之應用;另外不同部位異源基因分析結果發現,蕈柄與菌絲體總可溶性蛋白質中之綠色螢光蛋白質表現量最高,而訊息 RNA 則以擔孢子表現量較高。不同部位異源蛋白質表現量分析結果,可提供未來菇類分子農場發展之參考。zh_TW
dc.description.abstractMushroom molecular pharming, an emerging biotechnology application using mushrooms as bioreactors to produce pharmaceutical proteins or industrial enzymes, exhibits advantages of being safe, easy in manipulation, and less expense. Agrobacterium-mediated transformation has been established and the heterologous gene expression has also been enhanced by various molecular biology strategies in our laboratory. The previous study shows that the major green fluorescence was found on the pileus of Flammulina velutipes enhanced green fluorescent protein (eGFP) transformants fruiting body, indicating the major heterologous gene expression might occur in pileus or basidiospores. In order to analyze the basdiospores, eGFP gene was transformed into Pleurotus ostreatus using the vector which contains partially deleted F. velutipes glyceraldehyde-3-phosphate dehydrogenase promoter d1 (gpd-d1) and carboxin resistance gene. The expression of eGFP between mycelia, pileus, stipes and basdiospores of the transformants was determined and compared. The heterologous genes could be driven by F. velutipes gpd-d1 in P. ostreatus. The high protein expression level was found both in mycelia and stipes, while the high mRNA expression was found in basdiospores. The results suggested the carboxin resistance selection marker of F. velutipes can be applied in other mushrooms and the distribution of heterologous gene expression between various tissues need to be considered in development of mushroom molecular pharming.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:37:02Z (GMT). No. of bitstreams: 1
ntu-102-R00b22044-1.pdf: 10121483 bytes, checksum: cd909e3f7a87b9afdbb23fcefdcde06e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要................................................................................................................I
Abstract ....................................................................................................... II
目錄............................................................................................................ III
圖目錄....................................................................................................... VII
表目錄.........................................................................................................IX
第一章前言................................................................................................. 1
一、基因工程 ......................................................................................................................... 1
1. 基礎生物研究 ..................................................................................................... 1
2. 分子育種 ............................................................................................................. 2
3. 異源蛋白質生產 ................................................................................................. 2
二、異源表達系統 ................................................................................................................. 3
1. 原核生物表現系統 ............................................................................................. 3
2. 真核生物表現系統 ............................................................................................. 4
三、分子農場 ......................................................................................................................... 8
1. 植物分子農場之發展 ......................................................................................... 8
2. 植物分子農場之優勢 ......................................................................................... 9
3. 植物分子農場面臨之問題 ................................................................................. 9
四、菇類分子農場 ............................................................................................................... 11
1. 優勢與發展現況 ............................................................................................... 11
五、鮑魚菇 ........................................................................................................................... 14
1. 形態特徵與分類地位 ....................................................................................... 14
2. 生活史 ............................................................................................................... 14
3. 栽培優勢 ........................................................................................................... 15
4. 藥理活性與應用 ............................................................................................... 15
六、菇類異源表現系統 ....................................................................................................... 20
1. 轉形策略 ........................................................................................................... 20
2. 農桿菌媒介轉形法 ........................................................................................... 21
3. 篩選標誌 ........................................................................................................... 22
4. 報導基因 ........................................................................................................... 24
5. 分生策略提升異源蛋白質之表現量 ............................................................... 25
七、菇類分子農場面臨之問題 ........................................................................................... 30
1. 異源蛋白質聚集 ............................................................................................... 30
2. 表達部位差異對異源蛋白質降解之影響 ....................................................... 31
八、研究動機與目的 ........................................................................................................... 32
第二章材料與方法................................................................................... 35
一、實驗菌株與培養條件 ................................................................................................... 35
1. 真菌 ................................................................................................................... 35
2. 細菌 ................................................................................................................... 36
二、核酸引子序列 ............................................................................................................... 36
三、表現質體 ....................................................................................................................... 39
四、農桿菌電穿孔轉形 ......................................................................................................... 42
1. 農桿菌勝任細胞製備 ....................................................................................... 42
2. 農桿菌電穿孔轉形 ........................................................................................... 42
3. 農桿菌轉形株篩選 ........................................................................................... 43
五、鮑魚菇農桿菌媒介轉形 ................................................................................................. 44
1. 鮑魚菇轉形材料置備 ....................................................................................... 44
2. 農桿菌培養與前處理 ....................................................................................... 44
3. 農桿菌與真菌共培養 ....................................................................................... 44
4. 選擇性培養基抗生素濃度選擇 ....................................................................... 45
5. 選擇性培養基篩選 ........................................................................................... 45
六、鮑魚菇轉形株不同部位eGFP 表現量之分析 .......................................................... 48
1. 轉形株不同部位材料之置備 ........................................................................... 48
2. 轉形株不同部位螢光顯微鏡觀察 ................................................................... 48
3. 轉形株染色體DNA分析 ................................................................................ 49
4. 轉形株不同部位訊息RNA分析 .................................................................... 53
5. 轉形株不同部位目標蛋白質eGFP分析 ........................................................ 56
第三章實驗結果....................................................................................... 62
一、農桿菌媒介轉形 ........................................................................................................... 62
1. 表現質體確認 ................................................................................................... 62
2. 農桿菌電穿孔轉形 ........................................................................................... 62
3. 鮑魚菇轉形與篩選 ........................................................................................... 63
二、鮑魚菇表現金針菇來源之啟動子與篩選標誌 ........................................................... 71
1. 轉形株多次繼代與提升抗生素濃度培養 ....................................................... 71
2. 聚合酶連鎖反應分析轉形株菌絲體染色體DNA ........................................ 71
3. 螢光顯微鏡觀察轉形株菌絲體 ....................................................................... 72
三、轉形株不同部位異源基因表現分析 ........................................................................... 76
1. 螢光顯微鏡觀察 ............................................................................................... 76
2. 活體即時冷光螢光影像檢測系統分析 ........................................................... 76
3. 酵素連結免疫分析 ........................................................................................... 77
4. 西方墨點法分析 ............................................................................................... 77
5. 訊息RNA 表現量分析 .................................................................................. 78
第四章討論............................................................................................... 90
一、鮑魚菇表現金針菇來源之啟動子與篩選標誌 ........................................................... 90
1. 鮑魚菇表現金針菇來源之萎鏽靈篩選標誌 ................................................... 90
2. 鮑魚菇表現金針菇來源之啟動子探討 ........................................................... 91
3. 萎鏽靈篩選系統不穩定性 ............................................................................... 92
二、轉形株不同部位異源基因表現分析 ........................................................................... 98
1. 不同部位蛋白質萃取效果控制 ....................................................................... 98
2. 影響子實體不同部位蛋白質與訊息RNA 表現量不一可能原因 ............... 99
3. 金針菇與鮑魚菇轉形株子實體不同部位表現量比較 ................................. 100
4. 菌絲體與子實體異源蛋白質表現量比較 ..................................................... 100
第五章結論............................................................................................. 102
第六章未來展望..................................................................................... 103
第七章、參考文獻................................................................................. 105
dc.language.isozh-TW
dc.subject菇類分子農場zh_TW
dc.subject鮑魚菇zh_TW
dc.subject異源基因表現zh_TW
dc.subject萎鏽靈抗性基因zh_TW
dc.subjectmushroom molecular pharmingen
dc.subjectPleurotus ostreatusen
dc.subjectcarboxin resistance geneen
dc.subjectforeign protein expressionen
dc.title探討鮑魚菇轉形株菌絲體、子實體與擔孢子之異源基因表現zh_TW
dc.titleComparison of the heterologous gene expression in transgenic Pleurotus ostreatus between mycelia, fruiting bodies and basidiosporesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥(Ruey-Shyang Hseu),蘇慶華(Ching-Hua Su),楊啟伸(Chii-Shen Yang),常怡雍(Yee-yung Charng,)
dc.subject.keyword菇類分子農場,鮑魚菇,萎鏽靈抗性基因,異源基因表現,zh_TW
dc.subject.keywordmushroom molecular pharming,Pleurotus ostreatus,carboxin resistance gene,foreign protein expression,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
9.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved