Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立
dc.contributor.authorPo-Chun Hsuen
dc.contributor.author許博竣zh_TW
dc.date.accessioned2021-06-16T10:36:18Z-
dc.date.available2013-08-16
dc.date.copyright2013-08-16
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] J. Bacardit, M. Stout, J. D. Hirst, K. Sastry, X. Llor`a, and N. Krasnogor.
Automated alphabet reduction method with evolutionary algorithms for protein
structure prediction. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2007), pages 346–353, 2007.
[2] C.-H. Chen and Y.-p. Chen. Real-coded ecga for economic dispatch. Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2007),
pages 1920–1927, 2007.
[3] W.-M. Chen, C.-Y. Hsu, T.-L. Yu, and W.-C. Chien. Effects of discrete hill
climbing on model building for estimation of distribution algorithms. Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2013),
to appear, 2013.
[4] D. Chickering, D. Heckerman, and C. Meek. A bayesian approach to learning
bayesian networks with local structure. Proceedings of the Thirteenth conference
on Uncertainty in artificial intelligence, pages 80–89, 1997.
[5] J. S. De Bonet, C. L. Isbell, Jr., and P. Viola. MIMIC: Finding optima by
estimating probability densities. Proceedings of Advances in Neural Information
Processing Systems (NIPS-1996), pages 424–430, 1996.
[6] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. Doctoral dissertation, University of Michigan, Ann Arbor, 1975.
[7] K. Deb and D. E. Goldberg. Analyzing deception in trap functions. Foundations
of Genetic Algorithms 2, pages 93–108, 1993.
[8] R. Etxeberria and P. Larra˜naga. Global optimization using bayesian networks.
Proceedings of the Second Symposium on Artificial Intelligence Adaptive Sys-
tems, pages 332–339, 1999.
[9] K.-C. Fan, J.-T. Lee, T.-L. Yu, and T.-Y. Ho. Interaction-detection metric
with differential mutual complement for dependency structure matrix genetic
algorithm. Proceedings of the Congress on Evolutionary Computation (CEC-
2010), pages 3010–3017, 2010.
[10] K.-C. Fan, T.-L. Yu, and J.-T. Lee. Interaction detection by NFE estimation: a
practical view of building blocks. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2011), pages 71–72, 2011.
[11] D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem.
In Genetic Algorithms and Simulated Annealing, chapter 6, pages 74–88.
Pitman Publishing, London, 1987.
[12] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.
[13] D. E. Goldberg. The design of innovation: Lessons from and for competent
genetic algorithms. Kluwer Academic Publishers, Boston, MA, 2002.
[14] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. Proceedings of the Second International Confer-
ence on Genetic Algorithms on Genetic algorithms and their application, pages
41–49, 1987.
[15] D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks. Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 336–342, 2001.
[16] D. E. Goldberg and S. Voessner. Optimizing global-local search hybrids. Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
1999), pages 220–228, 1999.
[17] P. B. Grosso. Computer simulations of genetic adaptation: Parallel subcomponent
interaction in a multilocus model. Dissertation Abstracts International
Part B: Science and Engineering, 46(7), 1986.
[18] G. R. Harik. Finding multiple solutions in problems of bounded difficulty.
IlliGAL Report No. 94002, University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, 1994.
[19] G. R. Harik. Finding multimodal solutions using restricted tournament selection.
Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 24–31, 1995.
[20] G. R. Harik, E. Cant′u-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s
ruin problem, genetic algorithms, and the sizing of populations. Proceedings of
the 1997 IEEE International Conference on Evolutionary Computation, pages
7–12, 1997.
[21] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm.
Proceedings of IEEE International Conference on Evolutionary Computation,
pages 523–528, 1998.
[22] G. R. Harik, F. G. Lobo, and K. Sastry. Linkage learning via probabilistic
modeling in the extended compact genetic algorithm (ECGA). In M. Pelikan,
K. Sastry, and E. Cant′u-Paz, editors, Scalable Optimization via Probabilistic
Modeling, volume 33 of Studies in Computational Intelligence, pages 39–61.
Springer, Berlin, 2006.
[23] J. H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, MI, 1975.
[24] S. Kullback and R. A. Leibler. On information and sufficiency. Annual Mathe-
matical Statistics, 22:79–86, 1951.
[25] P. Larra˜naga and J. A. Lozano, editors. Estimation of Distribution Algo-
rithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers,
Boston, MA, 2002.
[26] C. F. Lima, F. G. Lobo, M. Pelikan, and D. E. Goldberg. Model accuracy in
the Bayesian optimization algorithm. Soft Comput., 15(7):1351–1371, 2011.
[27] C. F. Lima, M. Pelikan, D. E. Goldberg, F. G. Lobo, K. Sastry, and
M. Hauschild. Influence of selection and replacement strategies on linkage
learning in BOA. Proceedings of the Congress on Evolutionary Computation
(CEC-2007), pages 1083–1090, 2007.
[28] C. F. Lima, M. Pelikan, K. Sastry, M. Butz, D. E. Goldberg, and F. G. Lobo.
Substructural neighborhoods for local search in the Bayesian optimization algorithm.
Proceedings of the 9th international conference Parallel Problem Solving
from Nature (PPSN-2006), pages 232–241, 2006.
[29] J. Lin. Divergence measures based on the Shannon entropy. IEEE Transactions
on Information Theory, 37(1):145–151, 1991.
[30] B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection,
and the effects of noise. Complex System, 9:193–212, 1995.
[31] H. M‥uhlenbein and G. Paaß. From recombination of genes to the estimation
of distributions i. binary parameters. Proceedings of the 4th international con-
ference on Parallel Problem Solving from Nature (PPSN-1996), pages 178–187,
1996.
[32] J. M. Pe˜na, J. A. Lozano, and P. Larra˜naga. Unsupervised learning of bayesian
networks via estimation of distribution algorithms: an application to gene expression
data clustering. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 12(1
supp):63–82, Jan. 2004.
[33] M. Pelikan. Hierarchical Bayesian optimization algorithm: Toward a new gen-
eration of evolutionary algorithms. Springer, Berlin, 2005.
[34] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent
genetic algorithms. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 511–518, 2001.
[35] M. Pelikan, D. E. Goldberg, and E. Cant′u-Paz. BOA: The Bayesian optimization
algorithm. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999), pages 525–532, 1999.
[36] M. Pelikan, K. G. Helmut, and S. Kobe. Finding ground states of Sherrington-
Kirkpatrick spin glasses with hierarchical BOA and genetic algorithms. Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2008),
pages 447–454, 2008.
[37] M. Pelikan, J. Ocenasek, S. Trebst, M. Troyer, and F. Alet. Computational
complexity and simulation of rare events of ising spin glasses. Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2004), pages
36–47, 2004.
[38] M. Pelikan, K. Sastry, and D. E. Goldberg. Scalability of the Bayesian optimization
algorithm. International Journal of Approximate Reasoning, 31(3):221–
258, 2003.
[39] E. Radetic and M. Pelikan. Spurious dependencies and eda scalability. Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2010),
pages 303–310, 2010.
[40] E. Radetic, M. Pelikan, and D. E. Goldberg. Effects of a deterministic hill
climber on hboa. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2013), pages 437–444, 2009.
[41] R. Santana, P. Larra˜naga, and J. A. Lozano. Interactions and dependencies in
estimation of distribution algorithms. Proceedings of the Congress on Evolu-
tionary Computation (CEC-2005), pages 1418–1425, 2005.
[42] R. Santana, P. Larra`oaga, and J. A. Lozano. Learning factorizations in estimation
of distribution algorithms using affinity propagation. Evol. Comput.,
18(4):515–546, Dec. 2010.
[43] K. Sastry, H. A. Abbass, and D. E. Goldberg. Sub-structural niching in nonstationary
environments. Proceedings of the Australian Artificial Intelligence
Conference, pages 873–885, 2004.
[44] K. Sastry and D. E. Goldberg. Analysis of mixing in genetic algorithms: A survey.
IlliGAL Report No. 2002012, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL, 2002.
[45] K. Sastry and D. E. Goldberg. Designing competent mutation operators via
probabilistic model building of neighborhoods. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004), 2:114–125, 2004.
[46] G. Schwarz. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.
[47] S. Shakya and R. Santana. An eda based on local markov property and gibbs
sampling. Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2008), pages 475–476, 2008.
[48] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 1948.
[49] A. Sinha and D. E. Goldberg. A survey of hybrid genetic and evolutionary
algorithms. IlliGAL Report No. 2003004, University of Illinois at Urbana-
Champaign, Urbana, IL, January 2003.
[50] D. V. Steward. The design structure system: A method for managing the design
of complex systems. IEEE Transactions on Engineering Managment, 28:77–74,
1981.
[51] D. Thierens and D. E. Goldberg. Mixing in genetic algorithms. Proceedings of
the Fifth International Conference on Genetic Algorithms, pages 38–45, 1993.
[52] M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with
string classification according to fitness differences. Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-2004), pages 246–
257, 2004.
[53] T.-L. Yu and D. E. Goldberg. Quality and efficiency of model building for
genetic algorithms. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), pages 367–378, 2004.
[54] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-p. Chen. Genetic algorithm
design inspired by organizational theory: Pilot study of a dependency structure
matrix driven genetic algorithm. Proceedings of Artificial Neural Networks in
Engineering (ANNIE-2003), pages 327–332, 2003.
[55] T.-L. Yu, K. Sastry, and D. E. Goldberg. Linkage learning, overlapping building
blocks, and systematic strategy for scalable recombination. Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2005), pages
1217–1224, 2005.
[56] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing
for entropy-based model building in discrete estimation of distribution algorithms.
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2007), pages 601–608, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60917-
dc.description.abstract本論文探討在分佈估計演算法中取代方式對於假相關性數量的影響,且提出一個新的小生境技術。限制競爭式取代法是一個在分佈估計演算法領域中被廣泛使用的小生境技術。然而,限制競爭式取代法引發了變數間的假相關性,這項缺點會降低分佈估計演算法的成效。本論文使用以建構模塊為基礎定義了新的距離函式「單一小生境距離」(one-niche distance)。對於部份提供明確連結群組的分佈估計演算法,如延伸式精簡基因演算法,單一小生境距離可以直接應用於限制競爭式取代法。實驗結果顯示,在延伸式精簡基因演算法上,單一小生境距離成功地為限制競爭式取代法減低了假相關性的生成。修改過後的限制競爭式取代法仍然在族群中保留了足夠多具差異性的體。使用修改過的限制競爭式取代法的延伸式精簡基因演算法比起使用傳統限制競爭式演算法能處理更大規模的問題。另外,在具高度欺騙性的問題上,實驗顯示修改過的限制競爭式取代法從貪婪爬山演算法獲益更多且表現優於限制競爭式取代法。對於沒有提供明確連結群組的分佈估計演算法,如階層式貝式最佳化演化法,本論文提出了相關性結構矩陣限制競爭式取代法(DSMRTR)。此取代法建立一個相關性結構矩陣,藉由互補差距(differential mutual complement)估計單一小生境距離。實驗顯示,對於階層式貝式最佳化演化法,相關性結構矩陣限制競爭式取代法比起限制競爭式取代法引發較少的假相關性,同時保持了足夠的多樣性。本論文顯示出,在某些狀況下,當取代法有考慮模型建構時,可以讓分佈估計演算法有更好的表現。因此,比起依循為傳統基因演算法所做的設計,為分佈估計演算法發展新的運算子是有前景的。zh_TW
dc.description.abstractThis thesis investigates the effects of replacement strategies on the quantity of spurious dependencies and proposes a new niching scheme for estimation of distribution algorithms (EDAs). The restricted tournament
replacement (RTR) is a well-known niching scheme in the field of EDAs. However, RTR induces spurious dependencies among variables, which impair the performances of EDAs. The work in this thesis utilizes building-block-wise distances to define a new distance metric, the one-niche
distance. For those EDAs which provide explicit linkage information, such as ECGA, the one-niche distances can be directly incorporated into RTR. Experimental results show that the one-niche distance metric successfully improves RTR for ECGA with respect to the reduction of spurious dependencies. The modified RTR also maintains enough diverse individuals in the population. ECGA with the modified RTR shows higher scalability than that with the traditional RTR. Moreover, experiments show that the modified RTR gains more benefits from the greedy hill climber and outperforms RTR on highly deceptive problems. For EDAs without explicit linkage information such as hBOA, this thesis proposes DSMRTR, which constructs a dependency structure matrix via the differential mutual complement to estimate the one-niche distances. Experiments show that DSMRTR induces fewer spurious dependencies than RTR does while maintaining enough diversity for hBOA. The work in this thesis reveals that the replacement operator of EDAs yields better performances in some conditions when it takes model building into account. In the future, it is thus promising to develop different operators for EDAs instead of following the designs originally for traditional genetic algorithms.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:36:18Z (GMT). No. of bitstreams: 1
ntu-102-R00921034-1.pdf: 2767632 bytes, checksum: 591b3ff9305c6fdf2bfea71f9c477903 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書i
致謝ii
Acknowledgments iii
中文摘要iv
Abstract v
1 Introduction 1
2 Background Concepts on EDAs 4
2.1 General EDA Framework . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Niching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 RTR and Induced Distortion to Distribution of Individuals 9
3.1 How RTR Preserves Niches . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Impact on Distribution of Individuals . . . . . . . . . . . . . . . . . . 10
4 Modified RTR to Reduce Distortion of Distribution 13
4.1 One-Niche Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Performances of Modified RTR . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Modified RTR on OneMax . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Modified RTR on B-Traps . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Modified RTR on Traps . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Summary and Discussion on the Experiments . . . . . . . . . 20
4.3 Further Efficiency Enhancement . . . . . . . . . . . . . . . . . . . . . 22
5 DSMRTR: Generalization of Modified RTR for General EDAs 25
5.1 Differential Mutual Complement . . . . . . . . . . . . . . . . . . . . . 25
5.1.1 Definition of DMC . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Threshold for DMC . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Distance Estimation Based on DSM . . . . . . . . . . . . . . . . . . . 27
5.3 Performances of DSMRTR . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.1 DSMRTR and Spurious Dependencies . . . . . . . . . . . . . . 29
5.3.2 Niching Capabilities of DSMRTR . . . . . . . . . . . . . . . . 32
5.3.3 DSMRTR with GHC . . . . . . . . . . . . . . . . . . . . . . . 33
6 Conclusion 36
Bibliography 38
dc.language.isoen
dc.title增進分佈估計演算法模型正確性的小生境技術zh_TW
dc.titleNiching Scheme to Improve Model Accuracy for Estimation of Distribution Algorithmsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳穎平,張時中
dc.subject.keyword分佈估計演算法,取代,小生境技術,假相關性,模型建構,單一小生境距離,相關性結構矩陣限制競爭式取代法,zh_TW
dc.subject.keywordEDA,Replacement,Niching,Spurious Dependencies,Model Building,One-Niche Distance,DSMRTR,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved