Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐(Shuo-Hung Chang)
dc.contributor.authorJia-Ni Yuen
dc.contributor.author余佳霓zh_TW
dc.date.accessioned2021-06-16T10:36:09Z-
dc.date.available2018-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991
[2] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993
[3] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley,“C60:Buckminsterfullerene,”Nature, Vol. 318, pp.162, 1985
[4] A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, “Rotational actuators based on carbon nanotubes,” Nature, Vol. 424, Issue 6947, pp. 408-410, 2003
[5] V. P. Veedu, A. Y. Cao, X. S. Li, K. G. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, “Multifunctional composites using reinforced laminae with carbon-nanotube forests,” Nature Materials, Vol. 5, Issue 6, pp. 457-462, 2006
[6] I. K. Song, Y. S. Cho, G. S. Choi, J. B. Park, and D. J. Kim, “ The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition,” Diamond Relate Material, Vol. 13 (4-8), pp. 1210–3, 2004
[7] Chris Bower, Otto Zhou, Wei Zhu, D.J. Werder, Sungho Jin, “ Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Applied Physics Letters, Vol. 77 (17), pp. 2767–2769, 2000
[8] A. Gohier, C. P. Ewels, T. M. Minea, and M. A. Djouadi, Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, Vol. 46 (10), pp.1331-1338, 2008
[9] C. N. R. Rao, and Rahul Sen, “Large aligned-nanotube bundles from ferrocene pyrolysis,” Chemical Communications, Vol. (15), pp.1525-1526, 1998
[10] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B Park, K. H. Son, and D. G. Kim, “Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,” Journal Applied Physics, Vol. 91(6), pp. 3847–3854, 2002
[11] Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowndes, “ Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Applied Physic Letter, Vol. 78(10), pp. 1394–1396, 2001
[12] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” Journal Applied Physics, Vol. 90(10), pp. 5308–5317, 2001
[13] K. B. K. Teo, S-B Lee, M. Chhowalla, V. Semet, Vu Thien Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D. G. Hasko, H. Ahmed, G. A. J. Amaratunga, and W. I. Milne, “ Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres – how uniform do they grow?” Nanotechnology, Vol. 14(2), pp. 204–211, 2003
[14] Saito. Yahachi, Yoshikawa. Tadanobu, Okuda. Mitsumasa, Fujimoto. Naoya, Yamamuro. Saeki, Wakoh. Kimio, Sumiyama. Kenji, Suzuki. Kenji, Kasuya. Atsuo, Nishina. Yuichiro, “Iron particles nesting in carbon cages grown by arc discharge,” Chemical Physics Letters, Vol. 212 (3-4), pp.379-383, 1993
[15] C. N. R. Rao, and Rahul Sen, “Large aligned-nanotube bundles from ferrocene pyrolysis,” Chemical Communications, Vol. 1998(15), pp.1525-1526, 1998
[16] B. C. Satishkumar, A. Govindaraj, and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ,” Chemical Physics Letters, Vol. 307(3-4), pp.158-162, 1999
[17] A. Leonhardt, M. Ritschel, D. Elefant, N. Mattern, K. Biedermann, S. Hampel, Ch. Muller, T. Gemming, and B. Buchner, “Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene,” Journal Of Applied Physics, Vol 98, pp. 074315, 2005
[18] C. Muller, S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, B. Buchner, “Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties,” Carbon , Vol. 44, pp. 1746-1753, 2006
[19] R. Kozhuharova-Koseva, M. Hofmann, A. Leonhardt, I. Monch, T. Muhl, M. Ritschel, and B. Buchner, “Relation between Growth Parameters and Morphology of Vertically Aligned Fe-filled Carbon Nanotubes,” Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 15, pp. 135–143, 2007
[20] Qingfeng Liu, Zhi-Gang Chen, Bilu Liu, Wencai Ren, Feng Li Hongtao Cong, Hui-Ming Cheng, “Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures,” Carbon, Vol. 46, pp. 1892–1902, 2008
[21] C. X. Shi and H. T. Cong, “Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles,” Journal Of Applied Pysics, Vol. 104, pp. 034307, 2008
[22] C. Muller, D. Elefant, A. Leonhardt, and B. Buchner, “Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays,” Journal Of Applied Physics Vol. 103, pp. 034302, 2008
[23] Christian Muller, Albrecht Leonhardt, Ma’rcia Cristina Kutz, and Bernd Buchner, “Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene,” Journal Physics Chemical C, Vol. 113, pp. 2736–2740, 2009
[24] J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, “Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties,” Solid State Communications, Vol. 149, pp. 1619-1622, 2009
[25] Xuchun Guia, KunlinWang,WenxiangWang, JinquanWei, Xianfeng Zhang, Ruitao Lv, Yi Jia, Qinke Shu, Feiyu Kang, DehaiWu, “The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes,” Materials Chemistry and Physics, Vol. 113, pp. 634–637, 2009
[26] T. Muhl, D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Monch, M. Ritschel, P. Simon, S. Groudeva-Zotova, and C. M. Schneider, “Magnetic properties of aligned Fe-filled carbon nanotubes,” Journal Appllied Physics, Vol. 93, No. 10, 2003
[27] Xuchun Guia, KunlinWang,WenxiangWang, JinquanWei, Xianfeng Zhang, Ruitao Lv, Yi Jia, Qinke Shu, Feiyu Kang, DehaiWu, “The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes,” Materials Chemistry and Physics, Vol. 113, pp. 634–637, 2009
[28] Xianfeng Zhang, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Cailu Xu, Dehai Wu, “Rapid growth of well-aligned carbon nanotube arrays,” Chemical Physics Letters, Vol. 362, pp. 285–290, 2002
[29] Fengxia Geng, Hongtao Cong, “Fe-filled carbon nanotube array with high coercivity,” Physic B, Vol. 382, pp. 300–304, 2006
[30] S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, Ch. Muller, T. Gemming, B. Buchner, “Growth and characterization of filled carbon nanotubes with ferromagnetic properties,” Carbon, 44, pp. 2316–2322, 2006
[31] Wenxiang Wang, Kunlin Wang, Ruitao Lv, Jinquan Wei, Xianfeng Zhang, Feiyu Kang, Jianguo Chang, Qinke Shu, Yuquan Wang, Dehai Wu, “Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor,” Carbon, Vol. 45, pp. 1105–1136, 2007
[32] Illayathambi Kunadian, Rodney Andrews, Dali Qiana, M. Pinar Mengu, “Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method,” Carbon, Vol. 47, pp. 384 –395, 2009
[33] C. C. Su and S. H. Chang, “Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets” Carbon, under revision, 2011
[34] Xianfeng Zhang, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Cailu Xu, Dehai Wu, “Rapid growth of well-aligned carbon nanotube arrays,” Chemical Physics Letters, Vol. 362, pp. 285–290, 2002
[35] Christian P. Deck, Kenneth Vecchio, “Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,” Carbon, Vol. 43, pp. 2608–2617, 2005
[36] Christian Muller, Albrecht Leonhardt, Ma’rcia Cristina Kutz, and Bernd Buchner, “Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene,” J. Phys. Chem. C, Vol. 113, pp. 2736–2740, 2009
[37] A. Qui, et al., “Local and non-local behavior and coordinated buckling of CNT turfs,” Carbon, Vol. 49, pp. 1430-1438, 2011
[38] Matthew R. Maschmann, Qiuhong Zhang, Feng Du, Liming Dai, and Jeffery Baur, “Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays,” Carbon, Vol. 49, pp.386-397, 2011
[39] Nicholas J. Ginga, and Suresh K. Sitaraman, “The experimental measurement of effective compressive modulus of carbon nanotube forests and the nature of deformation,” Carbon, Vol. 53, pp. 237-244, 2013
[40] Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang, and Chi-Chuan Hwang, “Theoretical variations in the Young’s modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study,” Nanotechnology, Vol. 17, pp.3920-3924, 2006
[41] W.C. Liu, Y.D. Kuang, F.Y. Meng, S.Q. Shi, “Temperature effects on mechanical properties of the (3, 3) carbon nanotube X-junctions,” Computational Materials Science, Vol. 49, pp.916-919, 2010
[42] Vyasa V. Shastry, Upadrasta Ramamurty, and Abha Misra, “Thermo-mechanical stability of a cellular assembly of carbon nanotubes in air,” Carbon, Vol.50, pp.4373-4378, 2012
[43] S. Kawasaki, Y. Nojima, T. Yokomae, F. Okino, and H. Touhara, “Hardness of high-pressure high-temperature treated single-walled carbon nanotubes,” Physica B, Vol. 388, pp.59-62, 2007
[44] S. Musso, M. Giorcelli, M. Pavese, S. Bianco, M. Rovere, and A. Tagliaferro, “Improving macroscopic physical and mechanical properties of thick layers of aligned multiwall carbon nanotubes by annealing treatment,” Diamond and Related Materials, Vol.17, pp.542-547, 2008
[45] Zhibin Yang, Xuemei Sun, Xuli Chen, Zhenzhong Yong, Gen Xu, Ruixuan He, Zhenghua An, Qingwen Li, and Huisheng Peng, “Dependence of structures and properties of carbon nanotube fibers on heating treatment,” Journal of materials chemistry, Vol. 21, pp.13772-13775, 2011
[46] C. Zhu, C. Cheng, Y.H. He, L. Wang, T.L. Wong, K.K. Fung, N. Wang, “A self-entanglement mechanism for continuous pulling of carbon nanotube yarns,” Carbon, Vol. 49, pp.4996–5001, 2011
[47] Onnik Yaglioglu, Anyuan Cao, A. John Hart, Rod Martens, and A. H. Slocum, “Wild range control of microstructure and mechanical properties of carbon nanotube forests: a comparison between fixed and floating catalyst CVD techniques,” Advanced functional materials, vol. 22, pp.5028-5037, 2012
[48] Shefford P. Baker, “Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime,” Thin Solid Films 308–309, pp.289-296, 1997
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60914-
dc.description.abstract填鐵奈米碳管叢由於製備方式簡便,又因為其中填有鐵奈米線,有優異的電磁性能,近年來是備受矚目的材料。然而目前針對填鐵奈米碳管叢的研究之中,主要著重於填鐵奈米碳管叢的電磁性質,關於其機械性質的文獻較為少見。本研究以化學氣相沉積法製備填鐵奈米碳管叢,並利用奈米壓痕法與實驗法量測填鐵奈米碳管叢的機械性質,討論其分層結構以及受熱情形對機械性質的影響。
實驗結果發現,推入二茂鐵催化劑的數量不但可以控制填鐵奈米碳管叢的層數及厚度,層數越多的碳管叢有越好的機械性質。五層填鐵奈米碳管叢的彈性模數是單層填鐵奈米叢的5.5倍,表面硬度更是單層填鐵奈米碳管叢的28.5倍。另外,比較單層填鐵奈米碳管叢受高溫處理後對其機械性質的影響,其中於空氣中加熱單層填鐵奈米碳管叢至200°C,表層硬度會提升到原來的2.5倍,而於氬氣中加熱,其機械性質較無明顯變化。
zh_TW
dc.description.abstractMeasurement of the compressive elastic modulus of iron-filled carbon nanotube (CNT) forests is evaluated with two different methods. The first method uses a nanoindentation system to indent iron-filled CNT forests grown on rigid silicon substrates. Reduced modulus and hardness of iron-filled CNT forests can be measured by nanoindentation. The second experimental method uses a force gauge, a 2-axial micro-stage, and SEM to observe the behavior of iron-filled CNT forests under uniform compressive loading. Additionally, the stress vs. strain data of iron-filled CNT forests can be calculated.
Both methods were performed for iron-filled CNTs with 1, 3, and 5 layers, which were synthesized by controlling adding how many pinches of ferrocene. Using nanoindentation measure system, the hardness of 5-layer iron-filled CNT surface is 8.154 MPa, which is 28.5 times of single-layer iron-filled CNTs. Also, Young’s modulus of single-layer iron-filled CNTs measured by the second method were only 73 KPa, but Young’s modulus of 5-layer iron-filled CNTs is 404.41 KPa. Interestingly, the more layers of iron-filled CNTs, the higher hardness and Young’s modulus were found. Besides, using both two experimental methods to measure the mechanical properties of single-layer iron-filled CNT forests treated with a high temperature treatment, no significant distinction can be found between the pre-treatment sample and the sample after high temperature treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:36:09Z (GMT). No. of bitstreams: 1
ntu-102-R00522606-1.pdf: 5347956 bytes, checksum: 116879b52a0b0fcab19078d22aa61d7d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 奈米碳管結構 3
2.2 奈米碳管叢製備 7
2.3 填鐵奈米碳管叢 11
2.3.1 填鐵奈米碳管叢成長方法 11
2.3.2 填鐵奈米碳管叢成長機制 12
2.4 奈米碳管彈性模數測定 15
2.5 奈米碳管叢在高溫環境下之機械性質 19
2.6 奈米碳管叢經高溫處理對其機械性質的影響 22
第三章 實驗架構與設備 26
3.1 試片的準備 27
3.2 化學氣相沉積法成長填鐵奈米碳管叢 28
3.3 顯微分析 30
3.4 實驗架構 33
3.4.1 奈米壓痕量測儀量測碳管叢單點機械性質 33
3.4.2 力感測器與微動平台操控量測碳管叢大面積機械性質 39
第四章 實驗結果與討論 41
4.1 不同層數之填鐵奈米碳管叢機械性質 41
4.1.1 奈米壓痕法做填鐵奈米碳管叢之點狀量測 43
4.1.2 以拉力感測器做填鐵奈米碳管叢之大面積量測 46
4.1.3 與分層之未填鐵奈米碳管叢比較 59
4.2 高溫對單層填鐵奈米碳管叢之機械性質影響 66
4.2.1 以奈米壓痕法量測一般室內環境加熱填鐵奈米碳管叢 66
4.2.2 以奈米壓痕法量測通氬氣加熱填鐵奈米碳管叢 69
4.2.3 以拉力感測器量測加熱後之單層填鐵奈米碳管叢 76
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 86
dc.language.isozh-TW
dc.title以實驗方法量測填鐵奈米碳管叢之機械性質zh_TW
dc.titleExperimental Measurements of Mechanical Properties of Iron-Filled Carbon Nanotube Forestsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor蘇志中(Chih-Chung Su)
dc.contributor.oralexamcommittee施文彬(Wen-Pin Shih)
dc.subject.keyword填鐵奈米碳管叢,機械性質,奈米壓痕法,熱處理,zh_TW
dc.subject.keywordiron-filled carbon nanotube,mechanical property,nanoindentation,high temperature treatment,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved