請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Shang-Lun Tsai | en |
| dc.contributor.author | 蔡尚綸 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:35:20Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | [1] Ahmed, G. P., and P. Daly, “Finite-element method for inhomogeneous waveguide,” Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661–1664, 1969.
[2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol., vol. 20, pp. 1627–1634, 2002. [3] Andreani, L. C., and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B, vol. 73, p. 235114, 2006. [4] Baken, N. H. G., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol., vol. 8, pp. 576–586, 1990. [5] B’erenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. [6] Bienstman, “Two-stage mode finder for waveguides with a 2D cross-section,” Opt. Quantum Electron., vol. 36. pp. 5–14, 2004. [7] Bienstman, P., S. selleri, L. Rosa, H.P.Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A . Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron., vol. 38, pp. 731–759, 2006. [8] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides by a new finite difference method,” J. Lightwave Technol., vol. 34, pp. 1104–1113, 1986. [9] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124–1131, 1970. [10] Chen, M. Y., S. M. Hsu, and H. C. Chang, “A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with an arbitrary permittivity tensor,” Opt. Express, vol. 17, pp. 5965–5979, 2009. [11] Chew, W. C., and W. H.Weedom, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinate,” IEEE Microwave Opt. Technol. Lett., vol. 7, pp. 599–604, 1994. [12] Dems, M. R. Kotynski, and K. Panajotov. “Plane-wave admittance method–a novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express, vol. 13, pp. 3196–3207, 2005. [13] Dinleyici, M. S., and B. Patterson, “Vector modal solution of evanescent couplers,” J. Light Technol., vol. 15, pp. 2316–2324, 1997. [14] Ditkowski, A., J. S. Hesthaven, and C. H. Teng, “Modeling dielectric interfaces in the FDTD-method: A comparative study,” in 2000 Process in Electromagnetics Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, 2000. [15] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-difference time-domian formulation for general materials in complex geometries,” IEEE, Trans. Antennas Propagat., vol. 49, pp. 749–756, 2001. [16] Duguay, M. A., Y. Kokubun, T. L. Koch, and L, Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures,” Appl. Phys. Lett., vol. 49, pp. 13–15, 1986. [17] Fano, U., “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., vol 24, pp 1866–1878, 1961. [18] Ghatak, A. K., K. Thyagarajan, and M. R. Shenoy. “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol., vol. 5, pp. 660–667, 1987. [19] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995. [20] Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, 1984. [21] Hugonin, J. P., and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A, vol. 22, pp. 1844–1849, 2005. [22] Kharadly, M. M. Z., J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEEE, vol. 116, pp. 214–224, 1969. [23] Koch, T., U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett., vol. 23, pp. 244–245, 1987. [24] Kokubun, Y., T. Baba, and T. Sakaki, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett., vol. 17, pp. 892–893, 1986. [25] Lai, C. H., B. You,J. Y. Lu, T. A. Liu, J. L Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express, vol. 18, pp. 309–322, 2009. [26] Lai, C. H., and H. C. Chang, “Effect of Perfectly Matched Layer Reflection Coefficient on Modal Analysis of Leaky Waveguide Modes,” Opt. Express, Vol. 19, No. 2, pp. 562–569, 2011. [27] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielec- tricwaveguides using tangential vector finite elememts,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [28] Lee, S. M., “Finite-difference vectorial-beam-propagation method using Yee’s discretization scheme for modal fields,” J. Opt. Soc. Amer. A, vol.13, pp. 1369–1377, 1996. [29] Li, D. U., and H. C. Chang, “An efficient full-vectorial finite element modal analysis of dielectric waveguides incorporating inhomogeneous elements across dielectric discontinuities,” IEEE. J. Quantum Electron., vol. 36, pp. 1251–1261, 2002. [30] Li, Y. F., K. Iizuka, and J. W. Y. Lit, “Equivalent-layer method for optical waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp. 273–275, 1992. [31] Liu, Q. H., “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wireless Propagat, vol. 1, pp 131–134, 2002. [32] Lockwood, D. J., L. Pavesi, and K. Yamada. Silicon Photonics II, Springer-Verlag Berlin Heidelberg, 2011. [33] Lu, J. Y., C. P. Yu, H. C. Chang, H. W. Chen, and Y. T. Li, “Terahertz air-core microstructure fiber,” Appl. Phys Lett., vol. 31, 064105, 2008. [34] Lui, M. L., and Z. Chen, “A direct computation of propagation costant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique,” in Proc. 1999 Int. Conf. Computational Electromagnetics Applications, pp. 78–81, 1999. [35] L‥usse P., P. Stuwe, J. Sch‥ule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487–494, 1994. [36] Marcuse, D., ”Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol., vol. 7, pp. 122–130, 1989. [37] Mohammadi. A., H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express, vol. 13, pp. 10367–10381, 2005. [38] Obayya, S. S. A., B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Milati. “Full vectorial finite-element solution of nonlinear bistable optical waveguides,” J. Lightwave Technol., vol.38, pp. 1120–1125, 2002. [39] Ohke, S., T. Umeda, and Y. Cho, “Equivalent-layer method for optical waveguides with a multiple quantum well structure: comment,” Opt. Lett., vol. 18, pp. 1870–1872, 1993. [40] Pearce1, G. J., G. S. Wiederhecker, C. G. Poulton1, S. Burger, and P. St. J. Russell. “Models for guidance in kagome-structured hollow-core photonic crystal fibres” Opt. Express, vol. 15, pp. 12680–12685, 2007. [41] Pekel, ’’U., and R. Mittra, “A finite-element method frequency-domain application of the perfectly matched layer (PML) concept,” Microwave Opt. Technol. Lett., vol. 9, pp. 117–122, 1995. [42] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20–28, 1984. [43] Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on aistropic lossy mapping of space,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 90–92, 1995. [44] Saini, M., and E. K. Sharma, ”Equivalent refractive index of MQW waveguides,” IEEE J. Quntum Electron., vol. 32, pp. 1383–1390, 1996. [45] Saitoh, K., and M. Koshiba, ”Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quntum Electron., vol. 38, pp. 927–933, 2002. [46] Selleri S., L. A. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron, vol.33, pp. 359–371, 2001. [47] Soref, R. A., and K. J. Ritter, “Silicon Antiresonant reflecting optical waveguides,” Opt. Lett., vol. 15, pp. 792–794, 1990. [48] Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, “Dyadic Green function for the electromagnetic field in multilayered isotropic media: an operator approach,” Inst. Elec. Eng. Proc.-J., vol. 132, pp. 329–338, 1985. [49] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, ”Analysis of the spectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21–26, 1990. [50] Sudbo, A. S., ”Why are accurate computations of mode fields in rectangular dielectric waveguide difficult?,” J. Lightwave Technol., vol. 10, pp. 418–419, 1992. [51] Taflove, A., and S. C. Hagness, Computational Electromagnetics: The Finite Di erence Time Domain Method, Second Edition., Boston, MA: Artech House, 2000. [52] Uranus, H. P., H. J. W. H. Hoekstra, and E. van Groesen, “Galerkin finite element scheme with Bayliss–Gunzburger–Turkel-like boundary conditions for vectorial optical mode solver,” J. Nonlinear Opt. Phys. Mater., vol. 13, pp. 175–193, 2004. [53] Vincetti, L., and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express, vol. 18, pp. 23133–23146, 2010. [54] Vincetti, L., and V. Setti, “Fano resonances in polygonal tube fibers,” J. Lightwave Technol., vol. 30, pp. 31–37, 2012. [55] Vincetti, L., and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Lightwave Technol., vol. 10, pp. 1470–1474, 2012. [56] Wang, C. Y., S. Y. Chung, C. H. Teng, J. K. Wang, C. P. Chen, and H. C. Chang, “A high-accuracy multidomain legendre pseudospectral frequency-domain method with penalty scheme for solving scattering and coupling problems of nano-cylinders,” J. Lightwave Technol., vol. 31, pp 768–778, 2013. [57] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate vector mode calculations by beam propagation method,” J. Lightwave Technol., vol. 11, pp. 1209–1215, 1993. [58] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate vector mode calculations by beam propagation method,” J. Lightwave Technol., vol. 11, pp. 1209–1215, 1993. [59] Yamada, H., T. Chu, and S. Ishida, and Y. Arakawa,“Si Photonic Wire Waveguide Devices,” IEEE J. Quantum Electron., vol. 12, pp. 1371–1379, 2006. [60] Yamauchi J., N. Morohashi, and H. Nakano, “Rib waveguide analysis by the imaginary-distance vectorial beam-propagation method based on Yee’s mesh,” Opt. Quantum Electron., vol. 30, pp. 397–401, 1998. [61] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol. 14, pp. 302–307, 1966. [62] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397–1408, 2004. [63] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165-6177, 2004. [64] Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853–864, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60897 | - |
| dc.description.abstract | 本論文以全向量有限差分頻域法分析光波導,並引入完美匹配吸收層。本研究分析與討論包括光纖、光子導線、圓形與多邊形光纖導管。光子導線的計算結果顯示其傳播模態的洩漏及損耗特性,透過與其他數值方法的比較,也顯示此方法的高準確性。我們討論了完美匹配吸收層以及計算空間的參數對於有限差分頻域法精準度與收斂性的影響,較厚的完美匹配吸收層可以得到較高準確性,但在較薄的完美匹配吸收層中,較大的完美匹配吸收層反射係數的表現比較小的好。此外,若計算空間無法大到容納模態的場或是靠近邊界場值不夠小的話,計算準度就會降低。本研究亦分析多邊形光纖導管的模態特性,並改變半徑、介電質厚度、邊的個數等參數,探討其核心模態與高階介電質模態耦合所產生的法諾效應,結果顯示當邊的個數提高時,法諾效應發生的頻率往高頻移動,而且出現的密度變小;另外,法諾效應的頻率可以藉由改變管的半徑以及介電質厚度來控制。 | zh_TW |
| dc.description.abstract | In this thesis, the full-vectorial finite-difference frequency-domain (FDFD) method based on Yee's mesh with perfectly matched layer (PML) is utilized to analyze optical waveguides. Several optical waveguides such as photonic wires, circular tube fibers, and polygonal tube fibers are analyzed. The calculated results of the photonic wire show that the leaky and loss properties of the guided modes can be obtained with reasonably high accuracy as compared with reported results using different methods. Moreover, we discuss the effect of some parameters of PMLs and computational window on the accuracy and convergency of numerical results. Thicker PMLs could raise accuracy, but with thin PMLs the performance with larger reflection coefficient of PML is better than smaller one. Besides, if the computational window is not large enough such that the mode field is not enough small near the PMLs, numerical accuracy would be low. As for the polygonal tube fibers, their modal characteristics for various radii, dielectric thicknesses, and the side number of the polygon are investigated. Fano resonances caused by the coupling between the core mode and high order dielectric modes are analyzed and discussed. The results show that when the side number of the polygon increases, the Fano resonance frequencies become larger and their spectral densities decrease, and that the frequencies of Fano resonance can be manipulated by varying the tube radius or the dielectric thickness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:35:20Z (GMT). No. of bitstreams: 1 ntu-102-R00941038-1.pdf: 7237079 bytes, checksum: 8386c79854db97ff013aae371b18d8c1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Numerical Schemes for the Analysis of Optical Waveguides . . . . . . 1 1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 The Finite-Dierence Frequency-Domain Method 5 2.1 The Central Difference Scheme . . . . . . . . . . . . . . . . . . . . . 6 2.2 Mode Solvers for 1-D Problems . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 The TE Polarized Wave . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 The TM Polarized wave . . . . . . . . . . . . . . . . . . . . . 10 2.3 Mode Solvers for 2-D Problems . . . . . . . . . . . . . . . . . . . . . 11 2.4 The FDFD Method with Perfectly Matched Layers . . . . . . . . . . 15 2.5 Approximation at Dielectric Interfaces . . . . . . . . . . . . . . . . . 19 2.5.1 Stair-Case Approximation . . . . . . . . . . . . . . . . . . . . 19 2.5.2 Index Average Scheme . . . . . . . . . . . . . . . . . . . . . . 19 2.5.3 Proper Boundary Condition Matching . . . . . . . . . . . . . 20 2.6 Comparison between FDFD Solutions and Analytic Solutions: Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Analysis of the Photonic Wire 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Mode Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Numerical Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Grid Size and Number of Points in the Index Average Scheme 43 3.3.2 PML Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.3 Size of the Computational Domain . . . . . . . . . . . . . . . 45 4 Analysis of Circular and Polygonal Tube Fibers 65 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Circular Tube Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Fano Resonances of Polygonal Tube Fibers . . . . . . . . . . . . . . . 69 4.4 Polygonal Tube Fibers with Various N . . . . . . . . . . . . . . . . . 71 5 Conclusion 93 Bibliography 96 | |
| dc.language.iso | en | |
| dc.subject | 光波導 | zh_TW |
| dc.subject | 有限差分頻域法 | zh_TW |
| dc.subject | 光子導線 | zh_TW |
| dc.subject | 多邊形光纖導管 | zh_TW |
| dc.subject | Finite-difference frequency-domain method | en |
| dc.subject | optical waveguides | en |
| dc.subject | photonic wires | en |
| dc.subject | polygonal tube fibers | en |
| dc.title | 以有限差分頻域法分析光子導線與多邊形光纖導管 | zh_TW |
| dc.title | Analysis of Photonic Wires and Polygonal Tube Fibers Using the Finite-Difference Frequency-Domain Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲(Tzong-Jer Yang),鄧君豪(Chun-Hao Teng) | |
| dc.subject.keyword | 有限差分頻域法,光波導,光子導線,多邊形光纖導管, | zh_TW |
| dc.subject.keyword | Finite-difference frequency-domain method,optical waveguides,photonic wires,polygonal tube fibers, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
