Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60878
標題: 2.5D有限元素非傅立葉熱傳法則模擬
A 2.5D finite element approach for modeling non-Fourier heat conduction subjected to moving heat sources
作者: Xiang-Yu Chen
陳翔宇
指導教授: 楊永斌(Yeong-Bin Yang)
關鍵字: 傅立業熱傳,非傅立業熱傳,無限元素,2.5D有限元素法,
Fourier heat conduction,non-Fourier heat conduction,infinite element,2.5D method,
出版年 : 2013
學位: 碩士
摘要: 在分析實際工程問題時,所使用的熱傳公式多是基於傅立業熱傳定律,對於常規的熱傳過程,能夠取得不錯的結果。然而,當涉及到一些非常規的熱傳環境,比如極高(低)溫、溫度急劇變化,傳統的熱傳定律將不再適用。因為在傅立業熱傳定律中,熱的傳播速度為無限大,這與物理規律不符。所以學者提出了非傅立業熱傳定律,以期達到更準確的模擬。
本文首先介紹了非傅立業熱傳的一些基本特性。然後通過分離變量法和傅立業轉換,對非傅立業熱傳的控制方程式推導解析解,由此發現其不同於傳統熱傳的一些特性。隨後利用有限元素法模擬其數值解,提出波動無限元素的假設。針對移動熱載重的問題,借鑒了Yang和Hung(2001)在處理行駛的列車對土壤振動的影響時所用的2.5D方法。推導了2.5D有限元素法的控制方程,並和解析解作對比。最後總結了本文的不足之處和未來展望。
The classical Fourier model has often been adopted to analyze the heat conduction problem encountered in various engineering situations, which is quite satisfactory for the majority of problems considered. However, it fails to adequately predict the temperature variations in situations with drastic changes in temperature,, extreme temperature gradients, or with temperatures near absolute zero. Because Fourier’s law implies that the propagation speed of thermal disturbances is infinite, which is a paradox from the physical point of view. Therefore, it was suggested that the conventional Fourier heat equation should be replaced with a non-Fourier heat equation to account for the finite speed of thermal propagation.
Some characteristics of the non-Fourier heat conduction is presented in this paper. The analytical solution of the governing equation based on the non-Fourier law is solved by separation of variables and Fourier transform. Comparison of the results obtained by the classical Fourier theory and non-Fourier heat conduction law is carried out, and some discussions are made. Particularly, the dynamic infinite element is employed, along with the finite elements, to get the numerical solution. With the 2.5D finite element method proposed by Yang and Hung (2001), the temperature distribution in a semi-infinite field induced by a moving heat load is studied, and compared with the analytical one. The areas for further improvement or future research are outlined.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60878
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.28 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved