Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorTzu-Yun Tsengen
dc.contributor.author曾子芸zh_TW
dc.date.accessioned2021-06-16T10:33:33Z-
dc.date.available2020-07-17
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-03
dc.identifier.citation[1] U. Ramer, 'An iterative procedure for the polygonal approximation of plane curves', J. Comput. Graphwcs and Image Processing, vol. 1, pp. 244-256, 1972.
[2] A. Kolesnikov, 'ISE-bounded polygonal approximation of digital curves', Pattern Recogniton Letters, vol. 33, no. 10, pp. 1329-1337, 2012.
[3] M. Rizon, H. Yazid, P. Saad, Y. Ali, S. Masanori, S. Yaacob and M. Karthigayan, 'Object Detection Using Circular Hough Transform,' American Journal of Applied Sciences 2, no. 12, pp. 1606-1609, 2005.
[4] L. G. Hafemann, R. Sabourin, L. S. Oliveira, 'Writer-independent feature learning for offline signature verification using convolutional neural networks', Neural Networks The 2016 International Joint Conference on, 2016.
[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Univ. Pres s, 2000.
[6] A. D. L. Escalera, L. E. Moreno, M. A. Salichs and J. M. Armingol, 'Road traffic sign detection and classification', IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 848-859, Dec. 1997.
[7] A. Ruta, Y. Li, and X. Liu, 'Detection, tracking and recognition of traffic signs from video input,' Proc. ITSC, Oct. 2008, pp. 55-60.
[8] S. B. Wali, M. A. Hannan, S. Abdullah, A. Hussain and S.A. Samad, 'Shape Matching and Color Segmentation Based Color Segmentation Based Traffic Sign Detection system, 'Threshold, vol. 91, Jan. 2015, pp. 36-40.
[9] M. B. Mahatme and S. Kuwelkar, 'Detection and Recognition of Traffic Signs based on RGB to RED conversion, ' Proceedings of the IEEE 2017 International Conference on Computing Methodologies and Communication, 2017
[10] H. Gomez-Moreno, S. Maldonado-Bascon, P. Gil-Jimenez, and S. Lafuente-Arroyo, 'Goal evaluation of segmentation algorithms for traffic sign recognition, ' IEEE Trans. Intell. Transp. Syst., vol. 11, no. 4, pp. 917-930, Dec. 2010
[11] G. Woods, Digital Image Processing, 3rd edition, Prentice Hall.
[12] H. Rashmi, M. Shashidhar and G. Prashanth Kumar, 'Automatic tracking of traffic signs based on HSV', Proceedings, International Conference on Image Processing, Rochester, NY, USA 2002, pp.II-II.
[13] Fatmehsan, Y. R. Ghahari, A. Zoroofi, R. A. 'Gabor wavelet for road sign detection and recognition using a hybrid classifier' International Conference on Multimedia Computing and Information Technology (MCIT), 2010
[14] D. Nistér, H. Stewénius 'Linear Time Maximally Stable Extremal Regions, ' ECCV’08 proceedings of the 10th European Conference on Computer Vision: part II, Oct, 2008, pp. 183-196.
[15] J. Greenhalgh and M. Mirmehdi, 'Traffic sign recognition using MSER and random forests', Proc. Eur. Signal Process. Conf., pp. 1935-1939, 2012.
[16] S. Chakraborty and K. Deb, 'Bangladeshi Road Sign Detection Based on YCbCr color model and DtBs Vector', 1st international Conference on Computer and Information Engineering, 26-27 November, 2015.
[17] M. R. Luo and R. W. G. Hunt, 'The structures of the CIE 1997 Colour appearance model (CIECAM97s)', Color Research Application, vol. 23, no. 3, pp. 138-146, June 1998.
[18] X. Gao, et al. 'A new approach to traffic sign recognition.', pp. 736-741, 2002.
[19] X. Gao, L. Podladchikova, D. Shaposhnikov, K. Hong and N. Shevtsova, 'Recognition of traffic signs based on their colour and shape features extracted using human vision models', J. Vis. Commun. Image Represent., vol. 17, no. 4, pp. 675-685, 2006.
[20] M. García-Garrido, M. Sotelo, and E. Martín-Gorostiza, 'Fast Road Sign Detection Using Hough Transform for Assisted Driving of Road Vehicles,' in Computer Aided Systems Theory - EUROCAST 2005, 2005, pp. 543-548.
[21] H. Rhody, 'Lecture 10: Hough circle transform', Rochester Inst. Technol., 2005.
[22] S. Vitabile, G. Pollaccia, G. Pilato and E. Sorbello, 'Road signs recognition using a dynamic pixel aggregation technique in the HSV color space', Proc. IAP, pp. 572-577, 2001.
[23] A. Ghafoor, R. Naveed Iqbal, and S. Shoad Khan. Image matching using distance transform. In Scandinavian Conference on Image Analysis, pages 654-660, Göteborg, Sweden, June 2003.
[24] D. M. Gavrila. Traffic sign recognition revisited. In Mustererkennung (DAGM), Bonn, Germany, 1999, Springer Verlag.
[25] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
[26] M. C. Kus, M. Gokmen and A. S. Etaner-Uyar, 'Traffic sign recognition using scale invariant feature transform and color classification', Proc. Int. Symp. Computer Information Sciences, 2008.
[27] X. Hua, X. Zhua, D. Lia and H. Li, 'Traffic sign recognition using Scale invariant feature transform and SVM', A special joint symposium of ISPRS technical commission IV and AutoCarto in conjunction with ASPRS/CaGIS fall specialty conference, pp. 15-19, 2010.
[28] N. Dalal and B. Triggs, 'Histograms of Oriented Gradients for Human Detection', Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005.
[29] I. Creusen, R. Wijnhoven and E. Herbschleb, 'Color exploitation in HOG-based traffic sign detection', Proc. ICIP, pp. 2669-2672, 2010.
[30] Y Y. Yang, H. Luo, H. Xu and F. Wu, 'Towards real-time traffic sign detection and classification', IEEE Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 2022-2031, Jul. 2016.
[31] Y. Yuan, Z. Xiong and Q. Wang, 'VSSA-NET: Vertical spatial sequence attention network for traffic sign detection', IEEE Trans. Image Process., vol. 28, no. 7, pp. 3423-3434, Jul. 2019.
[32] C. Cortes and V. Vapnik, 'Support-vector network', Machine Learning, vol. 20, pp. 273-297, 1995.
[33] Support Vector machine: https://mropengate.blogspot.com/2015/03/support-vector-machines-svm.html
[34] D.Soendoro and I.Supriana, 'Traffic sign recognition with Color-based Method, shape-arc estimation and SVM,' in Int.Conf.Elect.Eng. and Informatics, Bandung, July 2010, pp.1-6.
[35] C. Yao, F. Wu, H.-j. Chen, X.-l. Hao and Y. Shen, 'Traffic sign recognition using HOG-SVM and grid search', Proc. IEEE Int. Conf. Signal Process., pp. 962-965, 2014.
[36] H. Fleyeh, M. Shi, and H. Wu. Support vector machines for traffic signs recognition. In International Joint Conference on Neural Networks, 2008.
[37] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, 'Gradient-based learning applied to document recognition', Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
[38] A. Shustanov and P. Yakimov, 'CNN design for real-time traffic sign recognition', Procedia Eng., vol. 201, pp. 718-725, Dec. 2017.
[39] J. Jin, K. Fu and C. Zhang, 'Traffic sign recognition with hinge loss trained convolutional neural networks', Trans. Intell. Transp. Syst., vol. 15, pp. 1991-2000, 2014.
[40] D. Cireşan, U. Meier, J. Masci and J. Schmidhuber, 'A committee of neural networks for traffic sign classification', Proc. Int. Joint Conf. Neural Networks (IJCNN), pp. 253-256, 2011.
[41] V. Sze et al., 'Efficient Processing of Deep Neural Networks: A Tutorial and Survey', Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec 2017.
[42] Random Forests for Complete Beginners: https://victorzhou.com/blog/intro-to-random-forests/
[43] Random forest: https://ithelp.ithome.com.tw/articles/10222646?sc=rss.iron
[44] A. Ellahyani, M. El Ansari, I. El Jaafari and S. Charfi, 'Traffic sign detection and recognition using features combination and random forests', International Journal of Advanced Computer Science and Applications, vol. 7, no. 1, pp. 683-693, 2016.
[45] A. Ellahyani, M. El Ansari, I. El Jaafari and S. Charfi, 'Traffic sign detection and recognition using features combination and random forests', Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 1, pp. 683-693, 2016.
[46] T. Khoshgoftaar, M. Golawala and J. Van, 'An empirical study of learning from imbalanced data using random forest', 19th IEEE International Conference on Tools with Artificial Intelligence 2007. ICTAI 2007, vol. 2, pp. 310-317, 2007.
[47] A. Aguirre-Pablo, et al. 'Tomographic particle image velocimetry using smartphones and colored shadows.' Scientific reports vol.7, no.1 pp. 1-18, 2017.
[48] Ramer-Douglas-Peucker algorithm from Wikipedia: https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
[49] C. Liu, F. Chang, Z. Chen and D. Liu, 'Fast Traffic Sign Recognition via High-Contrast Region Extraction and Extended Sparse Representation', IEEE Transactions on Intelligent Transportation Systems, vol. 17, January 2016.
[50] J. Greenhalgh and M. Mirmehdi, 'Real-time detection and recognition of road traffic signs', IEEE Trans. Int. Transp. Syst., vol. 13, no. 4, pp. 1498-1506, Dec. 2012.
[51] M. Liang, M. Yuan, X. Hu, J. Li and H. Liu, 'Traffic sign detection by ROI extraction and histogram features-based recognition', Proc. IEEE IJCNN, pp. 1-8, Aug. 2013.
[52] S. Salti, A. Petrelli, F. Tombari, N. Fioraio and L. Di Stefano, 'A traffic sign detection pipeline based on interest region extraction', Proc. IEEE Int. Joint Conf. Neural Netw., pp. 1-7, Aug. 2013.
[53] C. Liu, F. Chang and Z. Chen, 'Rapid multiclass traffic sign detection in high-resolution images', IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2394-2403, Dec. 2014.
[54] Y. Zhu, C. Zhang, D. Zhou, X. Wang, X. Bai and W. Liu, 'Traffic sign detection and recognition using fully convolutional network guided proposals', Neurocomputing, vol. 214, pp. 758-766, Nov. 2016.
[55] L. Liu, C. Fang and S. Chen, 'A novel distance estimation method leading a forward collision avoidance assist system for vehicles on highways', IEEE Trans. Intell. Transp. Syst., vol. 18, no. 4, pp. 937-949, Apr. 2017.
[56] S. Sivaraman and M. M. Trivedi, 'Integrated lane and vehicle detection localization and tracking: A synergistic approach', IEEE Trans. Intell. Transp. Syst., vol. 14, no. 2, pp. 906-917, Jun. 2013.
[57] L. Huang, T. Zhe, J. Wu, Q. Wu, C. Pei and D. Chen, 'Robust inter-vehicle distance estimation method based on monocular vision', IEEE Access, vol. 7, pp. 46059-46070, 2019.
[58] A. A. Ali and H. A. Hussein, 'Distance estimation and vehicle position detection based on monocular camera', 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), pp. 1-4, 2016.
[59] M. Hammer, M. Hebel, B. Borgmann, M. Laurenzis and M. Arens, 'Potential of lidar sensors for the detection of UAVs', Proc. SPIE, vol. 10636, pp. 10636-1-10636-7, May 2018.
[60] V. D. Nguyen, T. T. Nguyen and J. W. Jeon, 'Toward real-time vehicle detection using stereo vision and an evolutionary algorithm', Proc. IEEE Veh. Tech. Conf., pp. 1-5, 2012.
[61] V. T. B. Tram and M. Yoo, 'Vehicle-to-vehicle distance estimation using a low-resolution camera based on visible light communications', IEEE Access, vol. 6, pp. 4521-4527, Feb. 2018.
[62] L. Huang, T. Zhe, J. Wu, Q. Wu, C. Pei and D. Chen, 'Robust Inter-Vehicle Distance Estimation Method Based on Monocular Vision', IEEE Access, vol. 7, pp. 46059-46070, Apr. 2019.
[63] L. Huang, Y. Chen, Z. Fan and Z. Chen, 'Measuring the absolute distance of a front vehicle from an in-car camera based on monocular vision and instance segmentation', J. Electron. Imag., vol. 27, no. 4, Jul. 2018.
[64] J. Zhang, M. Huang, X. Jin and X. Li, 'A real-time chinese traffic sign detection algorithm based on modified YOLOv2', Algorithms, vol. 10, no. 4, pp. 127-133, Nov. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60861-
dc.description.abstract駕駛人輔助系統為近年來車輛上不可或缺的基本配備,更為自動駕駛汽車中重要的裝備。自動交通標誌的偵測與辨識為可以優化駕駛人輔助系統的科技,使駕駛人可以注意到各個路段的警告、禁制或是指示等資訊。另一方面,估測前方車輛距離的功能也是駕駛人輔助系統中重要的一環。
世界各國的交通標誌皆有自己的既定格式,但各國交通標誌的設計有一些特徵使人們可以簡單的識別。以台灣的交通標誌為例,特定的形狀以及顏色分別代表不同層級的警告標示,且交通標誌放置在路面特定高度及位置,因此在車輛上裝置的鏡頭更可以預測交通標誌的旋轉以及幾何變化。
本篇論文中我們收集了台灣的10組不同的交通標誌,每組分別有30-40張不同街景、不同明暗度、不同天氣狀況下所拍出來的照片。我們所提出來的交通標誌辨識系統,總共分為五個步驟,第一個步驟為將圖片進行前處理,將輸入的影像縮小至固定的大小以減少運算量,且將色彩空間從RGB轉換至HSV。第二步驟為偵測交通標誌,將處理完的圖片先使用快速的色彩偵測過濾掉背景,再使用霍夫轉換以及多邊形近似演算法等形狀辨識方式偵測出我們欲辨識的交通標誌。第三步驟將第二步所偵測出的區域切割出來後使用哈里斯邊角偵測提取特徵,將提取的特徵點利用仿射轉換、單應性、主成分分析等方式將圖片與標準圖片做對齊。第四步驟將對齊完成的圖片根據圖片的明暗度做二值化。最後一個步驟與標準圖二值化後的像素做比對,進而辨識出交通標誌。
前方車輛距離估測的演算法中,我們分別取了五種不同的車輛距離的影像。使用影像中前方車輛的輪胎與路面的接觸點以及自己車上的單鏡頭相機之間的幾何關係計算出前方車距再使用路面標線做校正。我們的演算法得出的平均相對誤差率為1.0546%, 較其他使用單鏡頭估計前方車距的方式準確。
交通標誌偵測以及識別演算法中,在資料量不足的狀況下亦能達到非常高的準確率,在不同環境中例如天色較暗或是雨天所拍攝的圖片皆可有效辨識。且在一般沒有GPU的電腦中也可以快速有效的辨識交通標誌,在我們的資料庫中達到100% 的辨識率。
zh_TW
dc.description.abstractNowadays, the driver assistance system is the basic device on the vehicle. The driver assistance system is also essential for the self-driving vehicle. The automatic traffic sign detection and recognition system can optimize the driver assistance system through reminding drivers to pay attention to the warning, prohibition, or instruction traffic signs on the road. On the other hand, the front vehicle distance estimation system is also important for the driver assistance system. It can announce the driver about the distance of the car in front of it.
Taking traffic signs in Taiwan as an example, specific colors, shapes, and sizes of traffic signs concern different levels of warning. We can use the camera on the vehicle to capture the street image and identify traffic signs with the predictable rotation and geometric change easily.
In this thesis, for the traffic sign detection and recognition part, we collected 10 different classes of traffic signs and each class contains 30-40 images under different street scenes, brightness, and weather conditions. We proposed a traffic sign detection and recognition system. The system is divided into five steps. The first step is pre-processing, including resizing the image into smaller scale and transforming the color space from RGB to HSV. The second step is traffic signs detection. We use color detection based on the HSV color space to eliminate background regions, and then use the Hough transform and the approximate polygon algorithm to detect the shape of traffic signs. The third step is alignment. We crop the region extracted from the second step and use Harris corner detection to find feature points. Furthermore, we apply several techniques, including affine transformation, homography, PCA to align the input images with standard images. After alignment, binarization is performed. The final step is comparing input images and standard images pixels by pixels to identify the class of the input image.
For the distance estimation part, we calculate the distance of several images. There are 5 different vehicle distances in our dataset. We estimate the distance by the geometric relationship between the monocular camera and some feature points in the image. The average error rate of the distance estimation is 1.0546%, lower than other state of art methods based on monocular vision.
The proposed methods of traffic sign detection and recognition system can achieve high accuracy even when the amount of data is insufficient. We can also recognize the traffic signs successfully in the conditions of dark environment and rainy days or foggy days. Moreover, our system is able to run on the computer without any GPU to recognize the traffic sign efficiently and achieve the accuracy to 100%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:33:33Z (GMT). No. of bitstreams: 1
U0001-0207202010002600.pdf: 6870107 bytes, checksum: 887af8dbda14dffe5647121cb40e8059 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Organization 3
Chapter 2 Traffic sign Detection Methods 4
2.1 Color-based detection 4
2.1.1 RGB color space 4
2.1.2 HSV color space 6
2.1.3 YCbCr color space 8
2.1.4 MSER color space 10
2.1.5 CIECAM97 color space 11
2.2 Shape-based detection 13
2.2.1 Hough Transform 13
2.2.2 Similarity detection 18
2.2.3 Distance transform detection 18
Chapter 3 Traffic sign Recognition Methods 21
3.1 Feature extraction based 21
3.1.1 Scale-Invariant Feature Transform (SIFT) 21
3.1.2 Histogram of gradient (HOG) 26
3.2 Machine Learning based 29
3.2.1 Support Vector Machine (SVM) 29
3.2.2 Convolution Neural Networks (CNN) 34
3.2.3 Random Forest 39
Chapter 4 Proposed Traffic Signs Detection and Recognition Algorithm 42
4.1 Overview of the Proposed Framework 42
4.2 Background knowledge of proposed method 44
4.2.1 Sobel operator 44
4.2.2 Canny edge detector 45
4.2.3 Ramer-Douglas-Peucker algorithm 46
4.2.4 Affine transformation 47
4.2.5 Homography transformation 50
4.3 Preprocessing 51
4.4 Traffic sign detection 53
4.4.1 Color-based detection 53
4.4.2 Shape-based detection 56
4.5 Traffic sign recognition 64
4.5.1 Traffic sign alignment 64
4.5.2 Binarization 70
4.5.3 Traffic sign Classification 75
Chapter 5 Proposed distance estimation 77
5.1.1 Introduction 77
5.1.2 Proposed vehicle distance estimation method 77
5.1.3 Detecting feature points to estimate the distance 81
Chapter 6 Experiment result 84
6.1 Traffic sign and vehicle distance estimation Database 84
6.1.1 Introduction of Taiwanese traffic sign 84
6.1.2 Introduction of Our Database 87
6.1.3 Introduction of GTSDB Database 87
6.1.4 Introduction of our vehicle estimation Database 90
6.2 Traffic sign detection result 91
6.3 Traffic sign recognition result 96
6.3.1 Alignment result 96
6.3.2 Binarization and pixel-wise error result 97
6.3.3 Classification result 98
6.4 Distance estimation result 99
Chapter 7 Conclusions and Future Work 102
7.1 Conclusions 102
7.2 Future Work 103
REFERENCE 104
dc.language.isoen
dc.subject主成分分析zh_TW
dc.subject交通標誌辨識zh_TW
dc.subject哈里斯邊角偵測zh_TW
dc.subject單應性zh_TW
dc.subject仿射轉換zh_TW
dc.subject車距估測zh_TW
dc.subject霍夫變換zh_TW
dc.subjectHarris corner detectionen
dc.subjectTraffic sign recognitionen
dc.subjectVehicle distance estimationen
dc.subjectPCAen
dc.subjectHough transformationen
dc.subjectAffine transformationen
dc.subjectHomographyen
dc.title基於幾何圖形分析之交通影像處理演算法zh_TW
dc.titleGeometric Pattern Analysis Techniques for Traffic Image Processing Algorithmen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鈺強(Yu-Chiang Wang),張榮吉(Rong-Chi Chang),郭景明(Jing-Ming Guo)
dc.subject.keyword交通標誌辨識,哈里斯邊角偵測,單應性,仿射轉換,霍夫變換,主成分分析,車距估測,zh_TW
dc.subject.keywordTraffic sign recognition,Harris corner detection,Homography,Affine transformation,Hough transformation,PCA,Vehicle distance estimation,en
dc.relation.page112
dc.identifier.doi10.6342/NTU202001260
dc.rights.note有償授權
dc.date.accepted2020-07-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0207202010002600.pdf
  未授權公開取用
6.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved