請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60826
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王暉(Huei Wang) | |
dc.contributor.author | Chun-An Hsieh | en |
dc.contributor.author | 謝峻安 | zh_TW |
dc.date.accessioned | 2021-06-16T10:31:55Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | [1] Institute of Astronomy and Astrophysics, Academia Sinica. (2013, May 19). Atacama Large Millimeter/submillimeter Array - Taiwan [Online]. Available: http://alma.asiaa.sinica.edu.tw/index.php
[2] G. Moschetti, N. Wadefalk, P.-A. Nilsson, M. Abbasi, L. Desplanque, X. Wallart and J. Grahn, “Cryogenic InAs/AlSb HEMT wideband low-noise IF amplifier for ultra-low power applications,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 144–146, Mar. 2012. [3] R. Limacher, M. Auf der Maur, H. Meier, A. Megej, A. Orzati, and W. Bachtold, “4–12 GHz InP HEMT-based MMIC low-noise amplifier,” in Proc. Int. Conf. IPRM, Kagoshima, Japan, Jun. 2004, pp. 28–31. [4] C.-C. Chiong, W.-J. Tzeng, Y.-J. Hwang, W. T. Wong, H. Wang, and M. T. Chen, “Design and measurements of cryogenic mHEMT IF low noise amplifier for radio astronomical receivers,” in Proc.4th EuMIC Conf., Rome, Italy, Sep. 2009. [5] B. Aja, et al., 'Cryogenic low-noise mHEMT-based MMIC amplifiers for 4–12 GHz band,' IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 613–615, Nov. 2011 [6] David M. Pozar, Microwave Engineering, 3rd ed., Hoboken: John Wiley & Sons, Inc., 2005. [7] M. R. Brozel, G. E. Stillman, Properties of Gallium Arsenide, 3rd ed., Institution of Engineering and Technology, 2005. [8] M. W. Pospieszalski, et al., “FET's and HEMT's at cryogenic temperatures-their properties and use in low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 552–560, March 1988. [9] G. Dambrine, et al., “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1151–1159, July 1988. [10] Ping-Yu Chen,“GaAs PHEMT device modeling and Ka-band MMIC amplifier design,” M.S. thesis, Graduate Inst. of Elect. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2002. [11] F. Aniel, P. Crozat, A. De Lustrac, R. Adde, and Y. Jin, “High electric field transport effects on low temperature operation of pseudomorphic HEMTs,” Journal de Physique. IV, Colloque, vol.4, no. 6, pp. 171–176, Jun. 1994. [12] Kipp A. Rogers. (2007, June 16). The behavior of the resistivity of metals at low and high temperatures [Online]. Available: http://large.stanford.edu/courses /2007/ap273/rogers1/ [13] Sadao Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties, 1st ed., NJ: World Scientific Publishing Co., 1994. [14] Wei-Je Tseng, “Investigation of low noise amplifier and phase shifter for microwave applications,” M.S. thesis, Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2008. [15] Ding-Jie Huang, “Research of microwave active circulators and cryogenic device modeling for low temperature low noise amplifier,” M.S. thesis, Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2013. [16] M. W. Pospieszalski, “Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 9, pp. 1340-1350, Sept. 1989. [17] IEEE Standard for Information technology, IEEE Standard 802.11ad™, Dec. 2012. [18] H. Ogawa, “Millimeter-wave wireless personal area network systems,” in Proc. Radio Frequency Integrated Circuits Symp., Jun. 2006, pp. 11–13. [19] Tae Wook Kim, Bonkee Kim, Kwyro Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,” IEEE Journal of Solid State Circuits, vol. 39, no. 1, pp. 223–229, Jan. 2004. [20] S. Ganesan, E. S. Sinencio, and J. S. Martinez, “A highly linear low-noise amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4079–4085, Dec. 2006. [21] V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNAs via optimum gate biasing,” in IEEE Int. Circuits Syst. Symp., Vancouver, BC, Canada, vol. 4, pp. 748–751, May 2004. [22] T.-S. Kim and B.-S. Kim, “Post-linearization of cascade CMOS low noise amplifier using folded PMOS IMD sinker,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 182–184, Apr. 2006. [23] H. Zhang, X. Fan and E. S. Sinencio, “A low-power, linearized, ultra-wideband LNA design technique,' IEEE Journal of Solid State Circuits, vol. 44, pp. 320–330, Feb. 2009. [24] Yen-Liang Yeh, and H.-Y. Chang, “Linearity enhancement of CMOS Device using a modified third-order transconductance cancellation technique for microwave amplifier,” in 2011 IEEE MTT-S Intl. Microw. Symp. Dig., 2011. [25] Yen-Hung Kuo, Jeng-Han Tsai, Wei-Hung Chou, and Tian-Wei Huang, “A 24-GHz 3.8-dB NF low-noise amplifier with built-in linearizer,” in Asia–Pacific Microw. Conf., 2010, pp. 1505–1508. [26] Jhe-Jia Kuo, Zuo-Min Tsai, Kun-You Lin, and H. Wang, “Design and analysis of novel linearization technique of cascode cell in a 60-GHz CMOS demodulator,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 456–465, 2011. [27] Wei-Tsung Li, J.-H. Tsai, H.-Y. Yang, W.-H. Chou, S.-B Gea, H.-C. Lu, and T.-W. Huang, “Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 2512–2523, 2012. [28] S. Emami, C.H. Doan, A. M. Niknejad, and R. W. Brodersen, “ A 60-GHz down-converting CMOS single-gate mixer,” in IEEE RFIC Symp., Jun. 2005, pp. 163–166. [29] Yu-Hsuan Lin, Jing-Lin Kuo and Huei Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in Proc.7th EuMIC Conf., 2012, pp. 365–368. [30] W.-H. Lin, W.-L. Chang, J.-H. Tsai, and T.-W. Huang, ”A 30-60 GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,” in IEEE Radio Wireless Symp. Dig., pp. 462–465, Jan. 2009. [31] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, H. Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008. [32] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no.10, pp. 2075–2085, Oct. 2007. [33] L. Sheng, J.-C. Jensen, and L.-E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/ downconverter,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1329–1337, Sep. 2000. [34] Ping-Han Tsai, Che-Chung Kuo, Jing-Lin Kuo, Sofiane Aloui and Huei Wang, “A 30–65 GHz reduced-size modulator with low LO power using sub-harmonic pumping in 90-nm CMOS technology,” in IEEE RFIC Symp., 2012, pp. 491–494. [35] B. Razavi, RF Microelectronics, 2nd ed., Upper Saddle River, NJ: Prentice-Hall, 2011. [36] T. Chang and J. Lin, “1–11 GHz ultra-wideband resistive ring mixer in 0.18- m CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2006. [37] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 670–678, 2012. [38] J.-J. Kuo, C.-H. Lien, Z.-M. Tsai, K.-Y. Lin, K. Schmalz, J. C. Scheytt, and H. Wang, “Design and analysis of down-conversion gate/base pumped harmonic mixers using novel reduced-size 180 hybrid with different input frequencies,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2473–2485, Aug. 2012. [39] F. Zhang, B. Yang, and E. Skafidas, “A low-power 5–75-GHz common-gate subharmonic mixer in 65-nm CMOS,” in IEEE Silicon Monolithic Integrated Circuits in RF Syst. Top. Meeting, Jan. 2011, pp. 133–136. [40] H. Y. Chang, P. S. Wu, T. W. Huang, H. Wang, C. L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20–30, Jan. 2006. [41] Hsin-Chiang Liao, “Design of millimeter-wave high sideband suppression ratio modulator for high speed transmission system and D-band power amplifier,” M.S. thesis, Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2012. [42] T.-Y. Chin, S.-F. Chang, C.-C. Chang, and J.-C. Wu, “A 24-GHz CMOS Butler matrix MMIC for multi-beam smart antenna systems,” in IEEE RFIC Symp., Jun. 2008, pp. 633-636. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60826 | - |
dc.description.abstract | 本論文主要涵蓋三個研究方向:第一部分是對應用於天文計畫之中頻低雜訊放大器的探討。第二部分是提出一線性器去實現高頻低雜訊放大器的線性度改善。第三部分是V頻帶正交解調器之研製。
藉由準確地選擇電路架構,此低雜訊放大器在4-12 GHz系統規格之中頻頻帶內提供足夠的增益(24±4 dB)及出色的雜訊指數(1.3±0.3 dB)。為了更貼近實際應用中的情況,本章後半段呈現該電路在低溫下的量測結果。另外,也討論了電晶體及材料物理特性在低溫環境中的表現,並進一步地提出相對應的電晶體低溫小訊號模型,並成功地預測低溫下的電路表現。 在本文的第二部分提出了可以改善60 GHz低雜訊放大器之線性度的內建式線性器。在本設計中,採用分離式疊加的概念並仔細考慮額外的寄生效應,使之能操作於更高頻段。在本章中,以65-nm CMOS製程實現了兩個低雜訊放大器,分別是有加線性器與沒加線性器的版本。實驗結果顯示有加線性器的低雜訊放大器可以達成24-dB的增益及4.8-dB 的平均雜訊指數,與另一沒加線性器的電路相似。另外,加上線性器後,在60 GHz附近的頻率,三階交互失真雜訊功率的抑制皆可以達到14 dB。 最後本文使用65-nm CMOS製程去實現一個由次諧波混頻器所組成的正交解調器。因為使用較少的電晶體去實現次諧波混頻,因此能夠達成較低的本地震盪源訊號及較小的晶片尺寸。量測結果顯示此電路有 -11-dB的轉換增益以及足夠的頻寬去進行高資料量的傳輸。 | zh_TW |
dc.description.abstract | This thesis consists of three parts: in the first part, the IF LNA design for astronomical application is investigated; in the second part, the linearity improvement of LNA at high frequency is studied; in the third part, the implementation of demodulator at 60 GHz is researched.
By properly choosing circuit architecture, the LNA demonstrates sufficient gain performance, 24±4 dB, and excellent noise figure,1.3±0.3 dB, from 4 to 12 GHz which is the IF bandwidth of the system. The cryogenic performances of the circuit are also presented. In addition, the behavior of 0.15-μm pHEMT devices in cryogenic temperature is discussed. A built-in linearizer is proposed to improve the linearity of LNA operating around 60 GHz. The concept of derivative superposition is applied and the parasitic effects are considered carefully in this work. Two versions LNAs, with and without linearizer, are demonstrated in 65-nm CMOS process. The experiment results of the linearized LNA show 24-dB gain and 4.8-dB averaged noise figure which are similar to the other LNA. After adding the linearizer, the reduction of IM3 distortion power is roughly 14 dB in various frequencies around 60 GHz. An I/Q demodulator based on sub-harmonic mixer is presented in 65-nm CMOS. With fewer transistors to compose the mixing core, lower LO driving power and smaller area can be achieved. The measurement results express -11-dB conversion gain and enough bandwidth for high data rate transmission. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:31:55Z (GMT). No. of bitstreams: 1 ntu-102-R00942019-1.pdf: 13213445 bytes, checksum: aa2b09d6591e363e4e2becd17a89bfec (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 2 1.3 Contributions 5 1.4 Thesis Organization 6 Chapter 2 Design of a 4-12 GHz IF Low Noise Amplifier for ALMA Radio Astronomy Receiver 7 2.1 Introduction 7 2.1.1 ALMA Radio Astronomy Receiver [1] 7 2.1.2 Concept of Noise Temperature [6] 8 2.2 Circuit Design 10 2.2.1 Device size and Bias point 10 2.2.2 Topology Consideration 12 2.2.3 Circuit Schematic and Simulation 13 2.3 Measurement Results 16 2.3.1 Room Temperature 16 2.3.2 Cryogenic Temperature 20 2.4 Cryogenic Device Model 23 2.5 Discussions 33 2.6 Summary 36 Chapter 3 Design of a 57-66 GHz Low Noise Amplifier with Built-in Linearizer Using 65-nm CMOS Technology 38 3.1 Introduction 38 3.2 Circuit Design 40 3.2.1 Built-in Linearizer 40 3.2.2 Low Noise Amplifier 45 3.3 Measurement Results 51 3.4 Discussions 60 3.5 Summary 61 Chapter 4 Design of a 57-66 GHz I/Q Demodulator Using 65-nm CMOS Technology 63 4.1 Introduction 63 4.2 Circuit Design 65 4.2.1 Sub-harmonic Mixer 65 4.2.2 Marchand Balun and Quadrature Coupler 72 4.2.3 I/Q Demodulator 75 4.3 Measurement Results 80 4.4 Discussions 90 4.5 Summary 94 Chapter 5 Conclusion 95 REFERENCE 96 | |
dc.language.iso | en | |
dc.title | 應用於微波毫米波之低雜訊放大器與正交解調器之研製 | zh_TW |
dc.title | Research of Low Noise Amplifier and I/Q Demodulator for
Microwave and Millimeter-wave Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林坤佑,黃天偉,章朝盛,蔡作敏 | |
dc.subject.keyword | 低雜訊放大器,互補式金屬氧化物半導體,毫米波,線性化,正交解調器,次諧波混頻器, | zh_TW |
dc.subject.keyword | low noise amplifier,CMOS,millimeter-wave,linearization,I/Q demodulator,sub-harmonic mixer, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 12.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。